

First: determine what you're being asked to find: ΔH_{rxn} or something else?

1. Asked to find ΔH_{rxn}? 3 Options!

Given?	Asked to find?	Use:
 A lot of bond energies A reaction <u>without</u> ΔH_{rxn} 	ΔH_rxn	 Draw the Lewis structures. Use the following: ΔH_{rxn} = Σ(BE_{reactants}) – Σ(BE_{products})
 A lot of heats of formation (ΔH_f) A reaction <u>without</u> ΔH_{rxn} 	ΔH_{rxn}	$\Delta H_{rxn} = \Sigma \Delta H_f (products) - \Sigma \Delta H_f (reactants)$
 Multiple reactions with ΔH A goal reaction without ΔH_{rxn} 	ΔH_rxn	Hess's Law! Rearrange the equations to make the goal equation, then combine your new ΔH 's (remember, what you do to an equation you must do to ΔH !)
 info to calculate q (using mCΔT or nCΔT) Moles/grams of a chemical 	ΔH_{rxn}	$\Delta H_{rxn} = \frac{q}{mol_{rxn}}$

2. Asked to find something else? 3 Options!

	Given?	Asked to find?	Use:
1. 2.	A reaction with ΔH _{rxn} Either: a. g or mol of a substance b. energy change (J or kJ)	1. Either: a. g or mol of a substance b. energy change (J or kJ)	Stoich! Don't forget to convert between moles of your substance and moles _{rxn}
1.	A phase change (vaporizing, condensing, freezing or melting) $\Delta H_{vap} \text{ or } \Delta H_{fus}$	Energy change (heat absorbed or released)	q = nΔH
1. 2. 3.	A temperature change Mass or moles of a substance Heat capacity ($\frac{J}{g ^{\circ} \text{C}}$ or $\frac{J}{mol ^{\circ} \text{C}}$)	Energy change (heat absorbed or released)	q=mCΔT