Unit 4 Multiple Choice Practice

- 1. Which of the following is true for an endothermic reaction?
 - a. The activation energy is always greater than the activation energy for an exothermic reaction.
 - b. Energy is released over the course of the reaction.
 - (c.) The strength of the bonds in the reactants exceeds the strength of the bonds in the products.
 - d. The products have more thermal energy than the reactants.
- 2. If the standard enthalpy of formation for HBr(g) is -35 kJ mol $^{-1}$, what is ΔH°_{f} for $Br_{2}(g)$? $H_{2}(g) + Br_{2}(g) \rightarrow 2 \text{ HBr}(g) \quad \Delta H_{rxn} = -110 \text{ kJ mol}^{-1}$ condition S

a.
$$0 \text{ ki mol}^{-1}$$
 b. $-40 \cdot \text{ki mol}^{-1}$ c.) $+40 \cdot \text{ki mol}^{-1}$ d. $+75 \text{ ki mol}^{-1}$

$$\Delta H_{f \times h} = Z \Delta H_{f} (pr) - Z \Delta H_{f} (re)$$

$$-110 = [2(HBr)] - [H_{z} + Br_{z}]$$

$$= 2(-35) - Br_{z}$$

$$MgO(s) \rightarrow Mg^{2+}(aq) + O^{2-}(aq)$$

- 3. Is the process above endothermic or exothermic? Why?
 - a. Exothermic, because one solid particle becomes two aqueous particles.
 - b. Endothermic, because one solid particle becomes two aqueous particles.
 - c. Exothermic, because overcoming the Coulombic forces within MgO(s) releases energy.
 - Endothermic, because overcoming the Coulombic forces within MgO(s) requires the input of energy.

4. Consider the following reaction showing photosynthesis:

$$6 CO_2(g) + 6 H_2O(l) \rightarrow C_6H_{12}O_6(s) + 6 O_2(g)$$

 $\Delta H = +2800 \,\mathrm{kJ/mol}$

How much thermal energy is absorbed or released when 2.0 moles of glucose, $C_6H_{12}O_6(s)$, is metabolized in the presence of excess oxygen gas, releasing CO_2 and H_2O ?

- a. 2800 kJ absorbed
- b. 5600 kJ absorbed
- c. 2800 kJ released
- (d.) 5600 kJ released

2.0 mol
$$C_6H_{12}O_6 \times \sqrt{\frac{2800 \text{ kT}}{1 \text{ mol } C_6H_{12}O_6}} = -5,600 \text{ kT}$$
blc
reversed!

Use the following information to answer the next three questions.

$$3 H_2(g) + N_2(g) \rightarrow 2 NH_3(g)$$
 $\Delta H = -81.0 \text{ kJ/mol}$

- 5. Gaseous hydrogen and nitrogen combine in the reaction above to form ammonia, NH₃. What is the value of the heat of formation of NH₃(g)?
- b. -81.0 kJ/mol c. +40.5 kJ/mol
- d. +81.0 kJ/mol

$$\Delta H_f^\circ \Rightarrow \text{make 1 mole!} \qquad \frac{3}{2}H_2 + \frac{1}{2}N_2 \rightarrow \text{NH}_3 \quad (\frac{1}{2}r \times n)$$

$$\frac{-81.0}{2} = -40.5$$

- 6. If 28.0 g of N₂(g) is combined with 28.0 g of H₂(g) in a sealed flask and the reaction is allowed to go to completion, what chemical species will still be present inside of the flask?
 - a. NH₃(g) only

- (c.) $NH_3(g)$ and $H_2(g)$
- b. $NH_3(g)$ and $N_2(g)$
- d. $NH_3(g)$, $N_2(g)$ and $H_2(g)$

28 g
$$N_2 \times \frac{1 \text{ mol}}{28 \text{ g}} = 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{1 \text{ mol } N_2} = 1 \text{ mol } N_2$$
 | mol $N_2 \times \frac{1 \text{ mol } N_2}{1 \text{ mol } N_2} = 1 \text{ mol } N_2$ | mol $N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ g}} = 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \times \frac{1 \text{ mol } N_2}{2 \text{ mol } N_2} \approx 4.7 \text{ mol } N_2 \Rightarrow 1 \text{ mol } N_2 \Rightarrow$

- 7. If 28.0 g of N₂(g) is combined with 28.0 g of H₂(g) in a sealed flask and the reaction is allowed to go to completion, how much heat is absorbed or released?
 - a. 81.0 kJ absorbed
- b. 375 kJ absorbed
- (c.) 81.0 kJ released
- d. 375 kJ released

$$N_2$$
 limiting \Rightarrow $1 \text{ mol } N_2 \times \frac{-81.0 \text{ kJ}}{1 \text{ nol } N_2} = -81 \text{ kJ}$

$$H_2O(l) \rightarrow H_2O(s)$$

- 8. Is the process above endothermic or exothermic? Why?
 - Exothermic, because forming new intermolecular attractions between water molecules releases energy.
 - b. Endothermic, because energy is needed to form new intermolecular attractions between water molecules.
 - Exothermic, because forming new bonds between water molecules releases energy.
 - d. Endothermic, because energy is needed to form new bonds between water molecules.

Bond	Average Bond Dissociation Energy (kJ/mol)	_
C – H	415	_
0 = 0	495	
C = 0	798	
O – H	463	

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

Use the information provided above to calculate the molar enthalpy of combustion, ΔH°_{comb}, for methane gas.

$$\Delta H_{comb}^{\circ} = BE (react) - BE (prod)$$

$$= [4(c-H) + 2(0=0)] - [2(c=0) + 4(0-H)]$$

$$= [4(415) + 2(495)] - [2(748) + 4(463)]$$

$$= 2650 - 3448 = -798$$

$$2 H_2 O(l) \rightarrow 2 H_2(g) + O_2(g)$$

10. Based on the information in the table below, calculate ΔH^{o}_{rxn} for the reaction shown above.

Bond	Average Bond Dissociation Energy (kJ/mol)	
H – H	430	
O = 0	500	
0 – H	460	

a.
$$-900 \text{ kJ mol}^{-1}$$

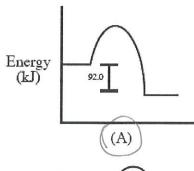
(c.)
$$+480 \text{ kJ mol}^{-1}$$
 d. $+900 \text{ kJ mol}^{-1}$

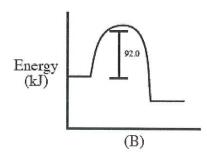
$$\Delta H_{rxn}^{o} = BE(react) - BE(prod)$$

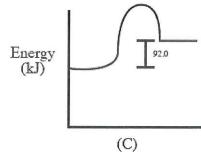
$$= [4(0-H)] - [2(H-H) + (0=0)]$$

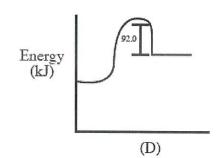
$$= 4(460) - [2(430) + (500)] = 1840 - 1360 = 480$$

$$\mathrm{F}(g) + e^- \to \mathrm{F}^-(g)$$


- 11. Is the process above endothermic or exothermic? Why?
 - Exothermic, because of the attraction between F(g) and an electron.
 - Endothermic, because of the attraction between F(g) and an electron.
 - Exothermic, because the process decreases the total number of particles from two to one.
 - Endothermic, because the process decreases the total number of particles from two to one.


- 12. When ammonium nitrate (NH₄NO₃) dissolves in water, the temperature of the water decreases dramatically. During this reaction, energy transfers from:
 - a. the reactants to the products.
- the surroundings to the system.
- b. the reactants to the surroundings.
- d. the products to the surroundings.


$$CS_2(l) \rightarrow C(s) + 2 S(s)$$
 $\Delta H = -92.0 \text{ kJ/mol}$


$$\Delta H = -92.0 \text{ kJ/mol}$$

13. Which of the following energy level diagrams gives an accurate representation of the above reaction?

$$CS_2(l) \rightarrow C(s) + 2S(s)$$

$$\Delta H = -92.0 \text{ kJ/mol}$$

- 14. Regarding the reaction above, how much heat is absorbed or released when 1.0 mol of solid carbon reacts with 1.0, mol of solid sulfur to produce CS2(1)? = Flip rxn!
 - a. 46 kJ of heat is released.

c. 92 kJ of heat is released.

46 kJ of heat is absorbed.

d. 92 kJ of heat is absorbed.

at is absorbed.

C +
$$2S \rightarrow CS_2$$

AH = + 92,0 kT/nol

limiting.

1.0 mol S + 92.0 KJ = +46 KJ 15.

- 16. The enthalpy change for which of the following reactions would be equal to the enthalpy of formation for ethanol (CH_3CH_2OH) ?
 - a. $CH_3 + CH_2 + OH \rightarrow CH_3CH_2OH$
- c. $2C+6H+O \rightarrow CH_3CH_2OH$
- b. $4 C + 6 H_2 + O_2 \rightarrow 2 CH_3CH_2OH$
- (d.) $2 C + 3 H_2 + \frac{1}{2} O_2 \rightarrow CH_3CH_2OH$

- 17. Inside a calorimeter, 100. mL of 1.0 M formic acid (HCOOH), a weak acid, and 100. mL of 2.0 M sodium hydroxide, NaOH, are mixed. The specific heat of the mixture is approximately 4.2 J/g°C, and the density is identical to that of water. If the temperature of the combined solution rises 8.0°C during the course of the reaction, calculate the approximate amount of heat released.
 - a. 0.84 kJ
- b. 3.4 k.
- (c) 6.7 kJ
- d. 11.8 kJ

$$q_{rxn} = -q_{cal} = -mC\Delta T = -(200. g)(4.2 \frac{T}{goc})(8.0 °C) = -6,700 \frac{T}{1000} = -6.7 kT$$

$$100. mL + 100. mL$$
released

18. Consider the previous question. If the experiment is repeated with 150. mL of 1.0 M HCOOH and 50.0 mL of 2.0 M NaOH, what would happen to the values for ΔT and ΔH_{rxn} ?

		ΔT	ΔH_{rxn}
	(A)	Increase	Increase
((B)	Stay the same	Stay the same
1	(C)	Decrease	Stay the same
	(D)	Stay the same	Increase

limiting.

 \Rightarrow 9 stays the same \star m = 200, g] same ar previous