Question 4: Short Answer

(a)	For the correct calculated value:	1 point
	$0.00250 \text{ mol } CH_3 NH_3 Cl \times \frac{67.52 \text{ g}}{1 \text{ mol}} = 0.169 \text{ g}$	
(b)	For a correct description of step 1:	1 point
	Accept one of the following:	
	• Use the spatula, balance, and weighing paper to measure out exactly 0.169 g of $CH_3NH_3Cl(s)$.	
	• Use the balance to weigh out the mass of solid in part (a).	
	For a correct description of step 4:	1 point
	Rinse the buret with a small amount of 0.100 M $CH_3NH_2(aq)$, drain, and refill with 0.100 M $CH_3NH_2(aq)$.	
	Total for part (b)	2 points
(c)	For the correct answer and a valid justification:	1 point
	Equal to. The ratio of weak acid to conjugate base is still 1:1.	
	Total for question 4	4 points