Name:	Class Period:
AP Chemistry 2019 Free Response Question #4	
A student is doing experiments with $CO_2(g)$. Originally, a sample of the gas is in a rigid container to 425 K.	ainer at 299 K and 0.70 atm.
(a) Describe the effect of raising the temperature on the motion of the CO ₂ (g) molecul	les.
(b) Calculate the pressure of the $CO_2(g)$ in the container at 425 K.	
(b) Calculate the pressure of the CO ₂ (g) in the container at 425 K.	
(c) In terms of kinetic molecular theory, briefly explain why the pressure of the CO₂(g) is heated to 425 K.	in the container changes as it
(I) The state of the control of the CO (a) in the control of the CO	and a base a second and the fact of the second as
(d) The student measures the actual pressure of the CO ₂ (g) in the container at 425 K at the pressure predicted by the ideal gas law. Explain this observation.	nd observes that it is less than

AP Chemistry 2019 Scoring Guidelines: Question #4

A student is doing experiments with $CO_2(g)$. Originally, a sample of the gas is in a rigid container at 299 K and 0.70 atm. The student increases the temperature of the $CO_2(g)$ in the container to 425 K.

(a) Describe the effect of raising the temperature on the motion of the $CO_2(g)$ molecules.

The average speed of the molecules increases as temperature increases.

1 point is earned for the correct answer.

(b) Calculate the pressure of the $CO_2(g)$ in the container at 425 K.

Both the volume and the number of molecules are constant, therefore

$$\frac{P_1}{T_1} = \frac{P_2}{T_2} \implies \frac{0.70 \text{ atm}}{299 \text{ K}} = \frac{P_2}{425 \text{ K}} \implies P_2 = 0.99 \text{ atm}$$

$$\frac{0.70 \text{ atm}}{299 \text{ K}} = \frac{P_2}{425 \text{ K}}$$

$$\Rightarrow$$
 $P_2 = 0.99 \text{ atm}$

1 point is earned for the correct answer.

(c) In terms of kinetic molecular theory, briefly explain why the pressure of the $CO_2(g)$ in the container changes as it is heated to 425 K.

Faster-moving gas particles collide more frequently with the walls of the container, thus increasing the pressure.

OR

Faster-moving gas particles collide more forcefully with the walls of the container, thus increasing the pressure.

1 point is earned for a correct explanation.

(d) The student measures the actual pressure of the $CO_2(g)$ in the container at 425 K and observes that it is less than the pressure predicted by the ideal gas law. Explain this observation.

The attractive forces between CO2 molecules result in a pressure that is lower than that predicted by the ideal gas law.

1 point is earned for a correct explanation.