\qquad
\qquad

AP Chemistry 2019 Free Response Question \#4

A student is doing experiments with $\mathrm{CO}_{2}(\mathrm{~g})$. Originally, a sample of the gas is in a rigid container at 299 K and 0.70 atm. The student increases the temperature of the $\mathrm{CO}_{2}(\mathrm{~g})$ in the container to 425 K .
(a) Describe the effect of raising the temperature on the motion of the $\mathrm{CO}_{2}(\mathrm{~g})$ molecules.
(b) Calculate the pressure of the $\mathrm{CO}_{2}(\mathrm{~g})$ in the container at 425 K .
(c) In terms of kinetic molecular theory, briefly explain why the pressure of the $\mathrm{CO}_{2}(\mathrm{~g})$ in the container changes as it is heated to 425 K .
(d) The student measures the actual pressure of the $\mathrm{CO}_{2}(\mathrm{~g})$ in the container at 425 K and observes that it is less than the pressure predicted by the ideal gas law. Explain this observation.

A student is doing experiments with $\mathrm{CO}_{2}(g)$. Originally, a sample of the gas is in a rigid container at 299 K and 0.70 atm . The student increases the temperature of the $\mathrm{CO}_{2}(\mathrm{~g})$ in the container to 425 K .
(a) Describe the effect of raising the temperature on the motion of the $\mathrm{CO}_{2}(g)$ molecules.

The average speed of the molecules increases as temperature increases.
1 point is earned for the correct answer.
(b) Calculate the pressure of the $\mathrm{CO}_{2}(\mathrm{~g})$ in the container at 425 K .

Both the volume and the number of molecules are constant, therefore

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \quad \Rightarrow \quad \frac{0.70 \mathrm{~atm}}{299 \mathrm{~K}}=\frac{P_{2}}{425 \mathrm{~K}} \quad \Rightarrow \quad P_{2}=0.99 \mathrm{~atm}
$$

1 point is earned for the correct answer.
(c) In terms of kinetic molecular theory, briefly explain why the pressure of the $\mathrm{CO}_{2}(g)$ in the container changes as it is heated to 425 K .

Faster-moving gas particles collide more frequently with the walls of the container, thus increasing the pressure.
OR
Faster-moving gas particles collide more forcefully with the walls of the container, thus increasing the pressure.

1 point is earned for a correct explanation.
(d) The student measures the actual pressure of the $\mathrm{CO}_{2}(g)$ in the container at 425 K and observes that it is less than the pressure predicted by the ideal gas law. Explain this observation.

The attractive forces between CO_{2} molecules result in a pressure that is lower than that predicted by the ideal gas law.

1 point is earned for a correct explanation.

