Bonding and IMFS Free Response Study Guide

- 1. Draw the dang Lewis dot structure!
- 2. Reference the chart below depending on the question type.

Question Type	Example Question(s)	What to consider/talk about:	
Expanded octet exceptions	Which atoms can be stable with more than 8 bonded valence electrons and why?	 Must have access to empty d sublevel Only available to elements in rows 3-7 	
Comparing bond length and/or strength	 Which bond is shorter, X₂ or Y₂? Which bond is stronger, X₂ or Y₂? 	More shared electron pairs means: Stronger/shorter bond Greater attractive force between e⁻ and nuclei Nuclei pulled closer together/ harder to separate 	
Comparing bond angles	 Which bond angle is larger/smaller, H – X – H or H – Y – H? 	 Count number of lone pairs vs bonding pairs on central atom Lone pairs are more repulsive than bonding pairs More lone pairs = smaller bond angle 	
Comparing VSEPR geometry	 Why does XH₂ have bent geometry, but YH₂ is linear? Why does XH₃ have trigonal planar geometry, but YH₃ is trigonal pyramidal? 	 Count number of lone pairs vs bonding pairs on central atom Lone pairs distort the symmetry, pushing bonded atoms away 	
Comparing polar vs non-polar <u>bonds</u>	 Which bond is more polar, HX or HY? The X₂ bond is non-polar. Explain. 	 Greater electronegativity difference between bonded atoms = more uneven distribution of e⁻ density = more polar Non-polar = equally distributed e⁻ density 	
Comparing polar vs non-polar <u>molecules</u>	 Why is XH₃ a polar molecule, but YH₃ is non- polar? 	 Lone pair on central atom distorts symmetry = uneven distribution of e⁻ density = polar No lone pair on central atom = symmetrical e⁻ density = non-polar 	
Comparing vapor pressures, boiling points, or melting points	 Why does XH₂ have a lower vapor pressure than YH₂? Which has a higher melting point, XH₃ or YH₃? Explain. 	 Identify IMFS Non-polar = LDFs Polar = dipole to dipole H – FON = hydrogen bonding Connect IMF strength to vocab ↑ IMFs = ↓ VP, because molecules are more attracted to each other, less in gaseous state ↑ IMFs = ↑ BP/MP, because molecules are more attracted to each other and require more energy to separate 	

But WAIT! How can I tell if I molecule is polar?

	Yes	Polar molecule	
Long pairs on the control atom?	No	Look at terminal (non-central atoms)	
Lone pairs on the central atom?		Same?	Different?
		Non-polar molecule	Polar molecule