Types of Chemical Reactions

Type of Reaction	What Happens	Common Form
Synthesis Reaction	Two or more substances come together to make <u>1</u> new substance.	A + B → C
Decomposition Reaction	One substance breaks down into two or more simpler substances.	C → A + B
Single Replacement Reaction	One element replaces another in a compound.	$A + BC \rightarrow AC + B$
Double Replacement Reaction	Ions of two compounds exchange places to form two new compounds. AB + CD \rightarrow AD + C	
Combustion reaction	A substance combines with <u>oxygen</u> gas, releasing large amounts of energy in the form of heat and light.	$C_xH_yO_z + O_2 \rightarrow H_2O + CO_2$

There are three subsets of double replacement reactions that you will need to know!

- 1. <u>Precipitation Reaction</u>: two aqueous solutions mix to form a precipitate $(Solider) \rightarrow$ more about this shortly! $AB(aq) + CD(aq) \rightarrow AD(s) + CB(aq)$
- 2. Neutralization (Acid-Base) Reaction: an Arrhenius acid and base react to produce a salt and water.

$$HB + C(OH) \rightarrow H_2O + CB$$

3. <u>Gas Evolution Reaction</u>: two aqueous solutions mix to form a gas which <u>bubbles</u> out of solution. There are four general categories of this reaction type!

Compounds that Undergo Gas-Evolution Reactions

Reactant Type	Intermediate Product	Gas evolved (with decomposed products, if applicable)
Sulfides	None	H ₂ S(g)
Carbonates and bicarbonates	H₂CO₃	$CO_2(g) + H_2O(l)$
Sulfites and bisulfites	H₂SO₃	SO ₂ (g) + H ₂ O(l)
Ammonium	NH ₄ OH	NH ₃ (g) + H ₂ O(l)

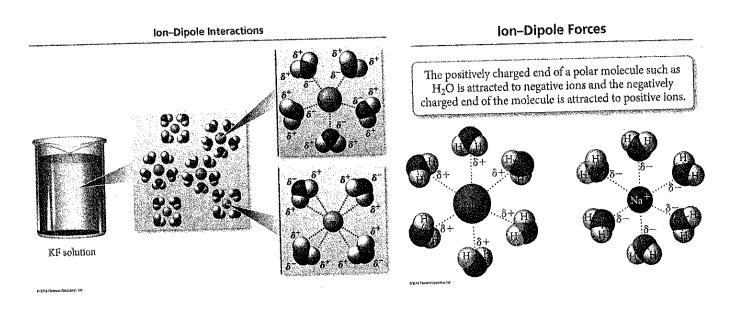
Oxidation/Reduction Reactions: I used to be great at redox, but I got a little rusty.;D

Oxidation-reduction (redox) reactions: where electrons are transferred from one atom to another.

- If a substance accepts an electron, it is reduced.
- If a substance loses an electron, it is <u>Oxidized</u>
- Electrons are always transferred from the species that is oxidized to the species that is reduced.

Two great mnemonics!

- 1. OIL RIG : Oxidation Is Loss (OIL) and Reduction Is Gain (RIG)
- 2. <u>LEO</u> goes <u>GER</u>: A species <u>loses</u> <u>e</u>lectrons when <u>o</u>xidized, and <u>gains</u> <u>e</u>lectrons when <u>r</u>educed.


Almost all reaction types (except double replacement) are redox. We will learn soooooooo much more about oxidation-reduction reactions next unit!

Precipitation Reactions

Precipitation Reactions: a double replacement reaction between aqueous solutions of ionic compounds which produces an ionic compound that is <u>insoluble</u> in water: this insoluble product is called a <u>precipitate</u>.

Quick review: Ionic Compound Solubility

- When we mix a <u>solute</u> with a <u>solvent</u>, there are attractive forces (ion-dipole IMFs) between the solute and solvent particles if the attraction is strong enough, this is what allows the solute to <u>dissolve</u>!
- lons separate (ionize) from one another when dissolved in water (called dissociation)
- The number of ions produced in solution depends on the ratio in the original <u>formula</u>.
 - o Ex: Pb(NO₃)₂ dissociates to form $\rightarrow 1 Pb^{2+}_{(92)} + 2 NO_3^{-}_{(92)}$
 - Thus, **1 formula unit** of Pb(NO₃)₂ dissociates to form 3 total ions.

