The Temperature Dependence of K_w

Consider the simple dissociation of water:

$$H-OH \rightleftharpoons H^+ + OH^-$$

1. Is the dissociation of water an endothermic or exothermic process? Why? (Hint: is a bond breaking or forming?)

Breaking (or ENDing) a bond is always end othermic! (need to input energy to break the attraction)

2. Rewrite the dissociation of water as a thermochemical equation:

- 3. If you cool a solution of pure water,
 - a. which direction should the reaction shift and why?

VT = V reactant => shift left to produce move heat + re-establish equilibrium

b. would you expect K_w to increase, decrease, or stay the same? Why?

c. would you expect [H+] to increase, decrease, or stay the same? Why?

- d. would you expect pH to increase, decrease, or stay the same? increase (\(\bigcup [H+] = \bigcup pH \)
- e. would you expect [OH-] to increase, decrease, or stay the same? Why?

- f. would you expect pOH to increase, decrease, or stay the same? increase! (I TOH-] = 1 poH)
- g. does the equation pH + pOH = 14 still hold true? Why or why not? Why?

Nope! Both pH and pOH increased, so pH+pOH > 14 when pure H2O gets colder than 25°C.

- 4. If you heat a solution of pure water,
 - a. Would you expect pH to increase, decrease, or stay the same? decrease! (shift right = 1 [H+])
 - b. Does this mean your solution of water is now more acidic, more basic, or still neutral? Explain.

Still neutral! Although [H+] T, [OH-] T too => [H+] = [OH-]

Soooooo important to know: The dissociation of water is endo thermic!