Using K_a 's to determine K_{eq} for a given reaction: You can compare the K_a values of two acids to determine if a given acid/base reaction is reactant or product favored!

Example: $HC_2H_3O_2 + HCO_3^- \Rightarrow C_2H_3O_2^- + H_2CO_3$ $K_a \text{ of } HC_2H_3O_2 = 1.8 \times 10^{-5} \Rightarrow S \text{ fronger a cide}$ $K_a \text{ of } H_2CO_3 = 4.3 \times 10^{-7}$

- 1. What are the <u>two</u> conjugate acid-base pairs in this reaction? $HC_2H_3O_2$ and $C_2H_3O_2$ HCO_3 and H_2CO_3
- 2. What are the two acids in this reaction? $HC_2H_3O_2$ and H_2CO_3
- 3. Which acid is stronger, $HC_2H_3O_2$ or H_2CO_3 ? $HC_2H_3O_2$
- 4. Is the example reaction reactant or product favored? <u>product-favored</u>
- 5. Is the K value of this reaction less than 1, equal to 1, or greater than 1? $\frac{K > 1}{K}$

Practice Problems!

- 1. Consider the reaction of an acid in water: $HA(aq) + H_2O(I) \Leftrightarrow H_3O^+(aq) + A^-(aq)$
 - a. If A $\bar{}$ is a stronger base than H_2O , is the value of K greater or less than 1? $\mbox{\ensuremath{\not{K}}}\xspace \mbox{\ensuremath{\not{L}}}\xspace$
 - b. If A⁻ is a stronger base than H₂O, is HA a weak acid or a strong acid? Weak acid.
- 2. Given the following acid/base reaction: $NO_2^- + NH_4^+ \Rightarrow NH_3 + HNO_2$ K_a of $NH_4^+ = 5.6 \times 10^{-10}$

- 1. What are the \underline{two} conjugate acid-base pairs in this reaction? NO_2^- and HNO_2 NH_4^+ and NH_3
- 2. What are the two acids in this reaction? NH4 and HNO2
- 3. Which acid is stronger? HNO2
- 4. Is the example reaction reactant or product favored? <u>reactant-favored</u>
- 5. Is the K value of this reaction less than 1, equal to 1, or greater than 1? $\frac{K < I}{I}$
- 3. The hypochlorite ion, ClO⁻, is a weaker base than the cyanide ion, CN⁻. Which is a stronger acid, HClO or HCN, and why?

4. The term "Ka for chlorous acid" refers to what chemical reaction?

$$HC10_{2(aq)} + H_{2}O_{(a)} = H_{3}O_{(aq)}^{\dagger} + C10_{2(aq)}^{\dagger}$$

	11
M	ultiple Choice Practice! 100% dissociation => Stron acid
5.	You prepare a 0.100 M solution of acid. For which of the following acids will $[H_3O^+] = 0.100$ M?
	a. $HC_2H_3O_2$ b. H_2SO_3 c. HNO_3 d. HIO_3
6.	All of the following can function as Brønsted-Lowry bases in solution EXCEPT: a. H ₂ O b. NH ₃ d. HCO ₃ Control of the following acids will [H ₃ O ⁺] << 2.0 M? Weak acid!
.7.	You prepare a 2.0 M solution of acid. For which of the following acids will [H ₃ O] << 2.0 M?
	a. HBr (b.) HF c. HI d. HCl
8.	Which of the following acids can be oxidized to form a stronger acid? a. H_2CO_3 $\stackrel{\frown}{b}$. H_2SO_3 c. HNO_3 d. H_3PO_4 $\stackrel{\longleftarrow}{L}$ $\stackrel{\longleftarrow}{H_2}SO_4$
9.	Which of the following is true for all bases?
	a. All bases donate OH ⁻ ions into solution.
•	b. Only strong bases create solutions in which OH ions are present.
	C. Only strong bases are good conductors when dissolved in solution.
	d. For weak bases, the concentration of the OH ions equals to concentration of the base in solution.
10	A 0.5-molar solution of which of the following bases will have [OH] << 0.5 M?
	a. $Mg(OH)_2$ b. LiOH c. $Al(OH)_3$ d. $Sr(OH)_2$
11	. The structure of two oxyacids is shown below:
	$\mathbf{H} - \ddot{\mathbf{O}} - \ddot{\mathbf{C}} \mathbf{i}$: $\mathbf{H} - \ddot{\mathbf{O}} - \ddot{\mathbf{F}} \mathbf{i}$:
	Which would be a stronger acid and why?
	HOCI, because the H–O bond is stronger than in HOF as chlorine is larger than fluorine.
÷	b. HOCI, because the H–O bond is weaker than in HOF as chlorine has a higher electronegativity than fluorine.
	(c.) HOF, because the H–O bond is weaker than in HOCl as fluorine has a higher electronegativity than chlorine.

HOF, because the H–O bond is stronger, than in HOCl as fluorine is smaller than chlorine.

12. A 0.5-molar solution of which of the following acids will be the best conductor of electricity? \Rightarrow Strong a. H₂CO₃ b. H₂S c. HF d. HNO₃