2. Calculate the pH of a 0.30 M NaF solution. The K_a value for HF is 7.2 x 10^{-4} .

$$F_{(ag)}^{-} + H_2O_{(e)} \stackrel{?}{=} HF_{(ag)} + OH_{(ag)}^{-}$$

Cacting as a weak base \Rightarrow need $K_b = \frac{K_W}{K_a} = \frac{1E-14}{7.2E-4} = 1.4E-11$

$$K_b = \frac{\text{EHFJEOH-J}}{\text{EF-J}} = \frac{x^2}{0.30 - x} \approx \frac{x^2}{0.30} = 1.4 \text{E-II}$$
 $K_b \ll 1$, x negligible

$$X = EOH = \sqrt{(0.30)(1.4E-11)} = 2.0E-6M$$

 $POH = -\log(2.0E-6) = 5.69 \Rightarrow PH = 14-5.69 = [8.31]$

Multiple Choice Practice

- 3. What is the pH of a 1.0 x 10^{-2} M solution of NaCN? (For HCN, $K_a = 1.0 \times 10^{-10}$).
 - a. between 0 and 3
- c. between 7 and 10

$$K_{b} = \frac{x^{2}}{1E-2} = 1E-4 \Rightarrow x = EOH^{-}] = \sqrt{(1E-2)(1E-4)} = \sqrt{1E-6} = 1E-3$$

$$\Rightarrow pOH = 3$$

$$pH = 14-3 = 11$$

$$650 \text{ kJ} + HCO_{3}^{-}(aq) + HC_{2}O_{4}^{-}(aq) \leftrightarrow CO_{3}^{2}^{-}(aq) + H_{2}C_{2}O_{4}(aq)$$

$$A \qquad B \qquad CB \qquad CA$$
4. If K > 1, all of the following statements are true about the reaction above EXCEPT:

- (a.) $\mathsf{HC_2O_4}^-$ is a weaker base than $\mathsf{CO_3}^{2-}$.
 - b. HCO₃⁻ and H₂C₂O₄ are both acting as acids in the reaction.
- The reaction lies far to the right (favors products).
- Lowering the temperature of the solution will decrease the value of K.
- 5. Which of the following would form a basic solution when dissolved in water?

a. HCl b. LiCl c.
$$NH_4Cl$$
 d. $NaC_2H_3O_2$ SA! LiOH HCl NH_3 HCl $NaOH$ HC_2H_3O SB SA WB SA SB WA \Rightarrow neutral \Rightarrow acidic

- 6. Estimate the pH of a 1.0×10^{-5} M solution of the weak base $C_6H_5NH_2$? ($K_b = 4.0 \times 10^{-10}$).
 - between 0 and 3
- between 7 and 10
- between 3 and 7
- between 10 and 14

$$K_b = \frac{x^2}{1E-5} = 4E-10 \Rightarrow x = EOHJ = \sqrt{4E-15} = 2E-7.5 \approx 1E-7.5$$

 $\Rightarrow pOH = 7.5 \Rightarrow pH = 14-7.5 = 6.5$

- 7. Which of the following would a solution with the lowest pH?
 - a. NaOH

SB

- 8. A solution of a monoprotic acid, HA, has a pH of 5.00. Calculate the acid dissociation constant for the weak acid if the solution has a molar concentration of 0.50 M.
 - a. 2.0×10^{-11}
- (b.) 2.0 x 10⁻¹⁰
- c. 2.0×10^{-7}
- d. 2.0×10^{-6}

$$X = EH_3O+J = 10^{-5}$$
 $K_q = \frac{X^2}{EHAJ} = \frac{(1E-5)^2}{0.5} = \frac{1E-10}{V_Z} = 2E-10$

- 9. Which of the following can act as an amphoteric species?

 - 11. HCO₃⁻
 - NH_4^+ III.
 - a. Lonly
- b.) If only
- c. II and Жonly
- I, II, and III

10. What is the equilibrium expression for the hydrolysis of NH₄Cl?

a.
$$K = \frac{[HCl][OH^-]}{[Cl^-]}$$

a.
$$K = \frac{[HCl][OH^-]}{[Cl^-]}$$
 c. $K = \frac{[Cl^-]}{[HCl][OH^-]}$

(b)
$$K = \frac{[NH_3][H_3O^+]}{[NH_4^+]}$$
 d. $K = \frac{[NH_4^+]}{[NH_3][H_3O^+]}$

d.
$$K = \frac{[NH_4^+]}{[NH_3][H_3O^+]}$$

- 11. The pH of a 0.10 M KOH solution is:
 - a. 0.10
- b. 1.00
- 13.00
- 14.00