Calculating the pH of a Salt Solution: Salty and Delicious!

To calculate the pH of a salt solution, follow the thrilling three step process shown below!

- 1. Identify the ion of the salt that is acting as a <u>Weak</u> acid or base. (This will be the ion that came from the weak acid/base in the neutralization reaction).
 - a. If the ion is acting as a weak $\underline{\text{acid}}$, write the hydrolysis reaction of the ion with water and set up a RICE table using the $\underline{\text{Ka}}$ expression.
 - i. The hydrolysis reaction for an acidic salt will always be the <u>Cation</u> reacting with water to form <u>H3 Ot</u> and a weak <u>base</u>.
 - b. If the ion is acting as a weak \underline{base} , write the hydrolysis reaction of the ion with water and set up a RICE table using the \underline{Kb} expression.
 - i. The hydrolysis reaction for an basic salt will always be the <u>anion</u> reacting with water to form <u>OH</u> and a weak <u>acid</u>.
 - c. <u>WATCH OUT</u>: A classic trick question is to only provide K_a values even when a K_b value is needed. Use the relationship below to convert if needed!

$$1 \times 10^{-14} = K_a \times K_b$$

2. Use one of the equations below to solve for $\underline{\text{EH}_3\text{ O}^+\text{J}}$ or $\underline{\text{EOH}^-\text{J}}$

$$K_a = \frac{[x][x]}{[HA]_0}$$
 where $\mathbf{x} = [H_3O^+]$ or $K_b = \frac{[x][x]}{[B]_0}$ where $\mathbf{x} = [OH^-]$

3. Once you've calculated $[H_3O^+]$ or $[OH^-]$, solve for PH or POH.

$$pH = -log[H_3O^+]$$
 or $pOH = -log[OH^-]$

Guided Practice

1. Calculate the pH of a 0.10 M NH₄Cl solution. The K_a value for NH₄⁺ is 5.6 x 10⁻¹⁰.

NH₃:
$$H_{C1} = SA \text{ (no hydrolysis)}$$

NH₄ $(ag) + H_2O(g) \stackrel{?}{=} H_3O^{\dagger}(ag) + NH_3(ag)$
 $K_q = \frac{EH_3O^{\dagger}JENH_3J}{ENH_4^{\dagger}J} = \frac{\chi^2}{0.10-\chi} \approx \frac{\chi^2}{0.10} = 5.6 E - 10$
 $K_q \ll J_{\chi} \times \text{negligible}$
 $\chi = EH_3O^{\dagger}J = \sqrt{(0.10)(5.6E-10)} = 7.5E - 6M$
 $\rho H = -\log(7.5E - 6) = 5.13$

2. Calculate the pH of a 0.30 M NaF solution. The K_a value for HF is 7.2 x 10^{-4} .

$$F_{(ag)}^{-} + H_z O_{(e)} \stackrel{?}{=} HF_{(ag)} + OH_{(ag)}^{-}$$

Cacting as a weak base \Rightarrow need $K_b = \frac{K_W}{K_a} = \frac{1E-14}{7.2E-4} = 1.4E-11$

$$K_b = \frac{\text{EHFJEOH-J}}{\text{EF-J}} = \frac{x^2}{0.30 - x} \approx \frac{x^2}{0.30} = 1.4E-11$$

$$K_b \ll 1, x \text{ negligible}$$

$$X = EOH^{-}J = \sqrt{(0.30)(1.4E-11)} = 2.0E-6M$$

 $POH = -log(2.0E-6) = 5.69 \Rightarrow PH = 14-5.69 = [8.31]$

Multiple Choice Practice

- Itiple Choice Practice $N^a \circ H^{:SB} \to CN : WA$ 3. What is the pH of a 1.0×10^{-2} M solution of NaCN? (For HCN, $K_a = 1.0 \times 10^{-10}$).
 - a. between 0 and 3

$$K_b(cN-) = \frac{1E-14}{1E-10} = 1E-4$$

$$K_{b} = \frac{x^{2}}{1E-2} = |E-4| \Rightarrow x = EOH = \sqrt{(1E-2)(1E-4)} = \sqrt{1E-6} = |E-3|$$

$$\Rightarrow$$
 pOH=3
PH=14-3=11 favored=

650 kJ + HCO₃⁻(aq) + HC₂O₄⁻(aq)
$$\leftrightarrow$$
 CO₃²⁻(aq) + H₂C₂O₄(aq)

- $650 \text{ kJ} + \text{HCO}_3^-(\text{aq}) + \text{HC}_2\text{O}_4^-(\text{aq}) \longleftrightarrow CO_3^{2-}(\text{aq}) + \text{H}_2\text{C}_2\text{O}_4(\text{aq})$ $A \qquad \qquad \qquad CB \qquad \qquad CA$ 4. If K > 1, all of the following statements are true about the reaction above EXCEPT:
 - (a.) HC₂O₄ is a weaker base than CO₃²⁻.
 - b. HCO₃⁻ and H₂C₂O₄ are both acting as acids in the reaction.
 - The reaction lies far to the right (favors products).
 - d. Lowering the temperature of the solution will decrease the value of K.
- 5. Which of the following would form a basic solution when dissolved in water?

a. HCl b. LiCl c.
$$NH_4Cl$$
 d.) $NaC_2H_3O_2$

SA!

LiOH HCl NH_3 HCl $NaOH$ $Hc_2H_3O_3$

SB SA WB SA SB WA

 $\Rightarrow newtral$ $\Rightarrow acidic$