Redox Titrations: Electrochemistry Stoichiometry in Action!

Important Caveat: at this point in time, we have only performed and analyzed <u>acid-base</u> titrations, but a redox titration is <u>Not</u> an **ACID-BASE** titration. Although much of our language and calculations will be the same, please be cognizant of the difference and DO NOT use acid-base terminology (especially in your lab report ©).

Figure 1: Titration Setup

Goal of Titration: determine the unknown concentration of the analyte!

A substance in a solution of Knowh concentration (the +itrant , usually in a buret) is reacted with another substance in a solution of unknowh concentration (the analyte, usually in a flask or beaker)

- Equivalence point: the point at which the moles of each reactant are stoichiometrically equal to each other in solution. (However, this is NoT where the two reactants have neutralized each other: that only happens in an acid-base titration!)
- <u>End point</u>: the point of the titration where an <u>indicator</u> changes color (if thoughtfully chosen, this occurs approximately at the equivalence point as a visual indication of the point at which the stoichiometric equivalent has been added).

Quick Reminder: How to Read a Buret

Burets, unlike most glassware used for precise volume measurements, are read from the https://doi.org/10.2016/journal.org/ down, not the bottom up!

Example: The image to the left shows a buret of KMnO₄ before titration begins (leftmost) and at the end point (rightmost).

- 1. What volume of solution was initially present in the buret? 5.65 mL
- 2. What volume was present at the end point of the titration? 37.30 ML
- 3. How much KMnO₄ solution was added to the flask?

Let's Practice!

1. A solution of $I_3^-(aq)$ can be standardized by using it to titrate $As_4O_6(aq)$ under acidic conditions. The titration of 0.1021 g of $As_4O_6(aq)$ dissolved in 30.00 mL of water requires 36.55 mL of $I_3^-(aq)$ solution to reach equivalence point. The unbalanced equation is:

$$+3$$
, -2 , -1 ,

a. Balance the reaction above (in acidic solution).

$$As_{4}O_{6} \rightarrow As_{4}O_{10} \qquad I_{3} \rightarrow 3I^{-}$$

$$4H_{2}O + As_{4}O_{6} \rightarrow As_{4}O_{10} + 8H^{+} \qquad II$$

$$4H_{2}O + As_{4}O_{6} \rightarrow As_{4}O_{10} + 8H^{+} + 8e^{-} \qquad (I_{3} + 2e^{-} \rightarrow 3I^{-}) \times 4$$

$$4H_{2}O + As_{4}O_{6} \rightarrow As_{4}O_{10} + 8H^{+} + 8e^{-}$$

$$4H_{2}O + As_{4}O_{6} \rightarrow As_{4}O_{10} + 8H^{+} + 8e^{-}$$

$$4I_{3}^{-} + 8e^{-} \rightarrow 12I^{-} +$$

$$4I_{3}^{-} (qq) + 4H_{2}O_{(e)} + As_{4}O_{6} (qq) \rightarrow As_{4}O_{10}(qq)^{+} 12I_{(qq)} + 8H^{+}_{(qq)}$$

b. Identify the species oxidized and reduced in this reaction.

red: \mathbb{T}_3 c. Calculate the moles of As₄O₆(aq) present in the initial sample.

d. Calculate the initial [As₄O₆].

$$EAS_{4}D_{6}J = \frac{2.580E-4 \text{ mol}}{0.03000L} = \left[8.600 \times 10^{-2} \text{ M As}_{4}D_{6}\right]$$

e. How many moles of I₃ (aq) were added to reach equivalence point?

f. Calculate [I₃⁻].

$$[I_3] = \frac{1.082 \in -3 \text{ mol}}{0.03655 \text{ L}} = [2.824 \times 10^{-2} \text{ M I}_3]$$

Potential Titration Lab Errors:

- 1. Over-titration
 - a. Cause: going past the equivalence point by adding too Much titrant
 - b. Effect: calculated moles of titrant $\uparrow \rightarrow$ calculated moles of analyte $\uparrow \rightarrow$ calculated [analyte] is than actual [analyte]
- 2. Under-titration
 - a. Cause: not reaching the equivalence point by adding too $\frac{1}{1}$ titrant
 - b. Effect: calculated moles of titrant $\sqrt{}$ \rightarrow calculated moles of analyte $\sqrt{}$ \rightarrow calculated [analyte] is _____ than actual [analyte]
- 3. Water added to titrant (buret)
 - a. Cause: Buret still wet from rinsing when it is filled with titrant
 - b. Effect: Actual concentration of analyte is $\sqrt{}$ than it is marked $\rightarrow \frac{1}{2}$ volume added than you should need \rightarrow calculated moles of analyte are \uparrow \rightarrow calculated [analyte] is \uparrow
- 4. Water added to analyte (flask or beaker)
 - a. Cause: Flask or beaker still wet from rinsing when it analyte (unknown) is added
 - b. Effect: moles of analyte don't change $\rightarrow N0$ effect on [analyte]!

More practice!

2. The amount of l₃ (aq) in a solution can be determined by titration with a solution containing a known concentration of thiosulfate, $S_2O_3^{2-}$ (aq). The determination is based on the balanced equation:

$$I_3^-(aq) + 2 S_2 O_3^{2-}(aq) \rightarrow 3 I^-(aq) + S_4 O_6^{2-}(aq)$$

a. Given that it requires 36.40 mL of 0.3300 M Na₂S₂O₃(aq) to titrate the I₃ (aq) in a 15.00 mL sample, calculate the molarity of I₃ (aq) in the solution.

b. After performing the titration, a student determines that the molarity of I₃ (aq) that they calculated was