How to Identify What is Oxidized or Reduced in a Reaction

Once you have identified a redox reaction by the change in oxidation state, now you can tell what was oxidized or reduced!

- a. A substance that has the element that has been <u>bxidized</u> (LOST electrons) will have an oxidation number that becomes more <u>positive</u> (or less negative).
- b. A substance that has the element that has been <u>reduced</u> (GAINED electrons) will have an oxidation number that becomes more <u>negative</u> (or less positive).

Balancing Redox Reactions: We split redox reactions into two separate half - reactions

- The oxidation half-reaction has electrons as a <u>product</u>.
- The reduction half-reaction has electrons as a <u>reactant</u>

Oxidation Half-Reaction
$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

Reduction Half-Reaction

$$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$$

Reduction Potential Values: a measure of the tendency of a chemical species to gain electrons (aka be reduced). Reduction potential is measured in volts (V), or millivolts (mV). Reduction potential values are measured to the potential for H⁺ to gain electrons to become H₂.

How to read a Reduction Potential Chart

1. The more <u>positive</u> E°_{red} (V), the <u>more</u> likely it is to be reduced (gain electrons).

The more <u>hegative</u> E°_{red} (V), the <u>less</u> likely it is to be reduced (gain electrons).

Table 1. Standard Reduction Potentials at 25 ° C

	Reduction	n Half Reaction	E°
more potential	Co3+(aq) + e-	→ Co ²⁺ (ag) 7 less	1.92 V
to be reduced - (gain e-)	$Au^+(aq) + e^-$	→ Au(s) potentia	(1.69 V
	→ Mn³+(aq) + e	\rightarrow Mn ²⁺ (aq) to be	1.54 V
	$\int Au^{3+}(aq) + 3e^{-}$	-+ Au(s) exidize	d 1.498 V
	Ag ⁺ (aq) + e ⁻	\rightarrow Ag(s) $\int (a ee^{-c})^{-c}$	
	$Cu^+(aq) + e^-$	→ Cu(s)	0.52 V
	$Cu^{2+}(aq) + 2e^{-}$	→ Cu(s)	0.34 V
	$2H^+(aq) + 2e^-$	$\rightarrow H_2(g)$	0.00 V
	$Pb^{2+}(aq) + 2e^{-}$	\rightarrow Pb(s)	-0.13 V
	$Ni^{2+}(aq) + 2e^{-}$	\rightarrow Ni(s)	-0.26 V
	$Co^{2+}(aq) + 2e^{-}$	\rightarrow Co(s)	-0.28 V
less potential to be reduced	$Cd^{2+}(aq) + 2e^{-}$	→ Cd(s) 7 More	-0.41 V
	$Zn^{2+}(aq) + 2e^{-}$	-> Zn(s) potential	-0.76 V
	$\rightarrow Mn^{2+}(aq) + 2e^{-}$	→ Mn(s) be oxidize	d −1.18 V
	$Al^{3+}(aq) + 3e^{-}$	$\rightarrow Al(s)$	-1.66 V

When comparing two species:

- > Substance with the greater (more positive/less negative) reduction potential will be reduced
- Substance with the smaller (less positive/more negative) reduction potential will be oxid; zed
- 3. Switching the Stan of the reduction potential will give you the oxidation potential (E°oxidation)

$$-E_{red} = E_{ox}$$

Let's try!

1. Is the following reaction a redox reaction? If the reaction is redox, identify what was oxidized and reduced!

2. Rank these metals in order of the most easily oxidized to the least easily oxidized: Cu, Ni, Ag, Pb

being oxidized, then write the correction reduction or oxidation potential next to each half-reaction.

3.
$$E^{2r} C d^{2t} + Zn \rightarrow C d C d^{2r} + Zn^{2t}$$

 $OX: \overline{Z}_{h} \rightarrow \overline{Z}_{h}^{2t} + 2e^{-} E_{ox}^{e} = -E_{red}^{e} = +0.76V$
 $Fed: C d^{2t} + 2e^{-} \rightarrow C d E_{red}^{e} = -0.41V$
4. $2 Ag^{+} + Ni \rightarrow Ni^{2t} + 2 Ag$

Multiple Choice Practice FTW!

1. A balanced equation for the reaction of copper metal with nitric acid is shown below. Which of the following represents a true statement about the reaction?

$$3 \text{ Cu}(s) + 8 \text{ H}^+(aq) + 2 \text{ NO}_3^-(aq) \rightarrow 3 \text{ Cu}^{2+}(aq) + 4 \text{ H}_2\text{O}(l) + 2 \text{ NO}(g)$$

 $\phi + 1 + 5, -2 + 2 + 1, -2 + 2, -2$

- (a) The oxidation state of nitrogen changed from +5 to +2.
- b. Hydrogen ions are oxidized to form H₂O(I).
- The oxidation state of oxygen changes from -1 to -2.
- d. Copper metal is reduced to a copper (II) ion.

- 2. A strip of metal X is placed into a solution containing Y²⁺ ions and no reaction occurs. When metal X is placed in a separate solution containing Z²⁺ ions metal Z starts to form on the strip. Which of the following choices organizes the reduction potentials for metals X, Y, and Z from greatest to least?
 - a. X > Y > Z
- b. Y > Z > X
- (c) Z > X > Y
- d. Y>X>Z

$$+1,-2$$
 $+7,-2$ $+3,-2$ $+4,-2$ $+7,-2$ $-2,+1$
 $2 H_2 O(l) + 4 MnO_4^-(aq) + 3 ClO_2^-(aq) \rightarrow 4 MnO_2(aq) + 3 ClO_4^-(aq) + 4 OH^-(aq)$

- 3. Which species is reduced in the reaction represented above?
 - a. MnO₂
- b. ClO_2^-
- c.) MnO_4^-
- d. ClO₄

4. In the reaction below, a piece of solid nickel is added to a solution of potassium dichromate.

$$14 \, \mathrm{H^+}(aq) + \mathrm{Cr_2O_7^{2-}}(aq) + 3 \, \mathrm{Ni}(s) \rightarrow 2 \, \mathrm{Cr^{3+}}(aq) + 3 \, \mathrm{Ni^{2+}}(aq) + 7 \, \mathrm{H_2O}(l)$$

+6,-2

\$ +3

+2

Which species is being oxidized and which is being reduced?

<u>Oxidized</u>

Reduced

- a. $Cr_2O_7^{2-}(aq)$
- Ni(s)
- b. $Cr^{3+}(aq)$
- $Ni^{2+}(aq)$

- Ni(s)
- $Cr_2O_7^{2-}(aq)$
- d. $Ni^{2+}(aq)$
- $Cr^{3+}(aq)$