Overall Reaction Order

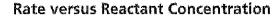
Zero order reaction rate: the rate of the reaction is always the Same.

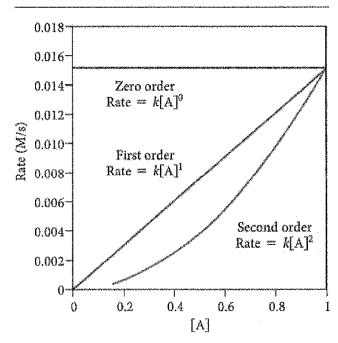
$$aA \rightarrow bB$$
 Rate = $k[A]^0 = k$

• Doubling [A] will have NO effect on the reaction rate.

orate is independent of time!

First order reaction rate: the rate of the reaction is directly proportional to the reactant concentration.


$$aA \rightarrow bB$$
 Rate = $k[A]^1 = k[A]$


• Doubling [A] will <u>double</u> the reaction rate.

Second order reaction rate: the rate is directly proportional to the Square of the reactant concentration.

$$aA \rightarrow bB$$
 Rate = $k[A]^2$

Doubling [A] will quadruple the reaction rate.

How to determine orders:

- 1. Order must be determined experimentally!
- 2. In reaction with multiple reactants, changing the concentration of 1 reactant will affect the overall rate of the reaction.
 - a. Change the initial concentration of _____ reactant at a time, while holding the initial concentration of the other reactants _____ !
 - b. Conduct <u>multiple</u> trials with changing concentrations of each reactant, and measure the rate each time to determine the affect of each change.

Example:

For example, for the following reaction,

this data was collected:

 $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$

M/c

Trial	[NO] mol/L	[Cl ₂] mol/L	Rate A
17	/0.200 72	0.200 1	/1.20 × 10 ⁻⁶
2 -	0.400	0.200	4.80 × 10 ⁻⁶ →
У 3	0.200	0.400	¥2.40 × 10 ⁻⁶
4	0.400	0.400	9.6 × 10 ⁻⁶

- a) Comparing Trial 1 and Trial 2:
 - → the concentration of NO: 2 X (doubled)
 - → the concentration of Cl2: Constant
 - → The reaction rate is increased ⁴ times, Therefore, the rate of reaction with respect to NO is 2e cond order ($2^2 = 4$).

To justify your answer, you will need to explain this process. You could explain the above answer like this:

From trials I and 2: doubling INOJ (or 2x INOJ) while keeping ICI2J constant increases rate by a factor of 4 (or 1 rate x 4), thus rxn is 2nd order w/ respect to NO.

- b) Comparing Trial 1 and Trial 3:
 - → the concentration of NO: Cohstant
 - → the concentration of Cl₂: 2× (doubled)
 - → The reaction rate is increased 2 times,

the concentration of NO: Cohstant $2^{\times} = 2 \Rightarrow \times = 1$ the concentration of Cl₂: 2^{\times} (doubled) The reaction rate is increased 2 times, Therefore, the rate of reaction with respect to Cl₂ is first order ($2^{1} = 2$).

Justify your answer here:

From trials land 3: 2 x ECI, I while ENOJ constant 1 rate x 2, thus the rxn is 1st order w/respect to Cl2.

- c) What is the rate law for the reaction? $rate = K [NO]^2 [Cl_2]$
- d) What is the value of the rate constant, k? (You can use any trial!) *my answer uses trial 1

$$K = \frac{\text{rate}}{\text{ENOJ}^2 \text{ ECl}_2 \text{J}} = \frac{1.20 \text{ E} - 6 \text{ M/s}}{(0.200)^3 \text{ (M)}^3} = [1.50 \times 10^4 \text{ M}^2 \text{s}^{-1} \text{ (M/s)}]$$

e) For trial 3, calculate the concentration of Cl₂ remaining when 25% of the original amount of NO has been consumed.