Mechanisms with a Fast Initial Step

- 1. When a mechanism contains a fast initial step, the rate limiting step may contain <u>intermediates</u>
- 2. When a previous step is rapid and reaches <u>equilibrium</u>, the forward and reverse reaction rates are equal, so the concentrations of reactants and products of the the step are related, and the product is an intermediate.
- 3. Substituting into the rate law of RDS will produce a rate law in terms of just <u>reactants</u>

Example: Nitrogen oxide is reduced to hydrogen gas to give water and nitrogen: $2 H_2(g) + 2 NO(g) \rightarrow N_2(g) + 2 H_2O(g)$ The experimentally determined rate law for this reaction is: rate = $k[H_2][NO]^2$

One possible mechanism to account for this reaction is:

Step 1:

 $2 \text{ NO(g)} \rightleftharpoons \text{N}_2\text{O}_2(g)$

Fast equilibrium

K. ENOJ2

Step 2:

 $N_2O_2(g) + H_2(g) \rightarrow N_2O(g) + H_2O(g)$

Slow * RDS!

K, [N, 0,] [H,]

Step 3:

 $N_2O(g) + H_2(g) \rightarrow N_2(g) + H_2O(g)$

Fast

K, [N, O] [H2]

To determine the rate law,

1. Write the rate law for the slow step: $Vate = K(EN_2O_2J)EH_2J$ intermediate!

2. Substitute reactants from the equilibrium step to replace any intermediates in the rate law:

*@equilibrium, rate forward = rate backwards

 $\begin{aligned} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ & \end{array} & \begin{array}{c} & \\ \end{array} & \\$

 $A+B \leftrightarrow M$ Fast equilibrium $\Rightarrow k [A][B] = k [M]$ $M+A \rightarrow C+X (Slow) *RPS!$ (ate = k(EM)[A]

L>intermediate > replace using fast equil step!

rate=K[A]2[B]

2. Write the rate law for the mechanism shown below. What is the overall reaction?

(slow step) * RDS = first step! = write rate

 $\cancel{2} \text{ NO}_2 \rightarrow \cancel{NO}_3 + \cancel{NO}$ slow step $\cancel{NO}_3 + \cancel{CO} \rightarrow \cancel{NO}_2 + \cancel{CO}_2$ fast step

law using only the first step "

rxn: | NOz+CO -> NO+CO2

rate=k[NO,]2