

3. In a titration, what volume of 4.65 M NH₃ is needed to neutralize 90.7 mL of 1.80 M $\overline{\rm HC}$

$$M_{9}V_{9} = M_{b}V_{b}$$

 $(1.80M)(90.7 mL) = (4.65 M)V_{b}$
 $V_{b} = \frac{(1.80)(90.7)}{4.65} = 35.1 mL$

· 50 3

4. If 29.9 mL of a solution of RbOH requires 16.1 mL of a 2.3 M solution of HClO₄ for complete titration, what is the initial molarity of the RbOH solution?

$$M_{4}V_{4} = M_{b}V_{b}$$

 $(2.3 \text{ M})(16.1 \text{ M}) = M_{b}(29.9 \text{ mL})$
 $M_{b} = \frac{(2.3)(16.1)}{29.9} = [1.2 \text{ M} \text{ RbOH}]$

Multiple Choice Practice

1. 0.60 M HNO₃ was used to neutralize 15 mL of 0.30 M KOH. What volume of HNO₃ was needed?

$$M_a V_a = M_b V_b$$

(0.6) $V_q = (0.3)(15)$

$$M_a V_a = M_b V_b$$

 $(0.6) V_q = (0.3)(15)$ $V_q = \frac{0.3 \times 15}{0.6} = \frac{15}{2} = 7.5 \text{ mL}$

- 2. The complete neutralization of 15.0 mL of KOH requires 0.030 mol HNO2. The [KOH] was:
 - a. 0.0020 M
- b. 0.50 M
- d. 5.0 M

moles
$$HNO_3 = \text{moles KOH}$$

 $0.030 \text{ mol} = M_b(0.0150 L) \Rightarrow M_b = \frac{0.030}{0.0150} = 2$

- 3. During a titration, what volume of 1.00 M KOH is necessary to completely neutralize 10.0 mL of 2.00 M HC₂H₃O₂?
 - a. 10.0 mL
- (b.) 20.0 mL
- 25.0 mL
- 40.0 mL

$$M_a V_a = M_b V_b$$

$$(2.00M)(10.0 \text{ mL}) = (1.00 \text{ M}) V_b$$