3. Nitramide, N₂H₂O₂, decomposes slowly in aqueous solution. This decomposition is believed to occur according to the reaction mechanism below.

Step
$$1(N_2H_2O_2) \rightarrow N_2HO_2^- + H^+$$
 (fast equilibrium)
Step $2(N_2HO_2^-) \rightarrow N_2O + OH^ \Rightarrow RDS$ (slow) $rate = K[N_2HO_2^-]$
Step 3) $H^+ + OH^- \rightarrow H_2O$ (fast)

Write the rate law for the decomposition of nitramide that is consistent with this mechanism.

4. The reaction $A + B \rightarrow C + D$, obeys the rate law expression Rate = k[A][B]. Which of the following proposed mechanisms below that are consistent with this information? Justify your answer.

Both I and II are consistent - they both sum to the overall rxn, and the stoichiometry for both supports the provided rate law (i.e. Stoichiometric coefficient of 1 for both A and B, and they're both 15^+ order in the given rate). The rate law for CO+NO₂ \rightarrow CO₂ + NO is rate = k [NO₂]². Which of the following mechanisms is consistent with

the data? Justify your choice.

(c) is consistent withe data, because the steps sum to the overall rxh, and step I is slow and thus the rate-determining step. NOz has a stoichiometric coefficient of 2 in that step, and NOz is second order in the provided rate law.

The following results were obtained when the following reaction was studied at 25°C; 2A + B → C + D

Experiment	Initial [A]	Initial [B]	Initial Rate of Formation of C (mol L ¹ min ⁻¹)
3×/	0.25	0.75	4.3×10 ⁻⁴
2	> 0.75 22	0.75 c	¥1,3×10 ⁻³)4×
3	1.50	1.50	5.3×10 ⁻³ L

a. Determine the order of the reaction with respect to A and to B. Justify your answer.

trials 1+2: 3×[A], [B] constant, rate increased by a factor of 3, so the rxn is 1st order w/respect to A.

trials 2+3: 2× [A] AND 2× [B], rate increased by a factor of 4; since 2 x [A] causes 2 x rate, 2 x [B] must double rate =) 1st order w/ respect to B

- b. Write the rate law for the reaction. rate = K[A][B]
- c. Calculate the value of the rate constant, k, for the reaction, specifying units.

d. Predict the initial rate of the disappearance of A if $[A]_{init} = 0.75$ mol L^{-1} and $[B]_{init} = 1.50$ mol L^{-1} .

rate (of rxn) = K [A][B] = (0.0023 M-1 min-1)(0.75 M)(1.50 M) = 0.0026 M/min

Stoich, weff.
That of
$$A = 2 \times \text{rate of} = 2(0.0026 \frac{M}{min}) = 0.0052 \frac{M}{min}$$

Consumption

e. Is the reaction mechanism represented below consistent with the rate law developed in part (b)? Justify your answer.

$$B \leftrightarrow M$$
 Fast equilibrium

 $M + A \rightarrow C + X$ Slow

 $X + A \rightarrow D$ Fast block A are 1

 $A + B \rightarrow C + D$

Yes, this rxn mechanism is consistent withe rate law from part b. The mechanism Steps Sum to the overall rxn. Also, the vate-determing (slow) Step has a rate law = KEMJEAJ, but Since M is an intermediate, we can use the fast equilibrium Step to replace EMJ = KegEBJ, so the vate law predicted by this mechanism = k(Keg [B])[A] = K[B][A],