$$Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$$

- 4. An electrolytic cell based on the reaction represented above was constructed from iron and copper half-cells. The observed voltage was found to be 0.59 volt instead of the standard cell potential, E° , of 0.78 volts. Which of the following could correctly account for this observation?
 - A. The copper electrode was larger than the iron electrode.

Ecoll < Ecoll

- B. The solutions in the half-cells had different volumes.
- C. The Cu^{2+} solution was more concentrated than the Fe^{2+} solution.
- (D.) The Fe²⁺ solution was more concentrated than the Cu²⁺ solution.

$$H_2O(s) \rightarrow H_2O(I)$$

- 5 /L. When ice is placed into warm water at room temperature, which of the following is true for the phase change shown above?
 - a. Q > K
- b. ΔG is positive
- c. ΔH is negative
- ΔS is positive

$$2 \text{ Al(s)} + 3 \text{ Mn}^{2+}(\text{aq}) \rightarrow 2 \text{ Al}^{3+}(\text{aq}) + 3 \text{ Mn(s)}$$

- A thermodynamically favorable cell, utilizing the reaction shown above, ran for 45 minutes. What happens to the measured voltage and why?
 - The measured voltage decreases over time because deviations in concentration that bring the cell closer to equilibrium will decrease the magnitude of the cell potential.
 - B. The measured voltage increases over time because deviations in concentration that bring the cell closer to equilibrium will increase the magnitude of the cell potential.
 - C. The measured voltage increases over time because [Zn²⁺] increases as the cell runs.
 - D. The measured voltage remains constant because E^o_{cell} is an intensive property.
- Which of the following statements is true about the reaction below?

$$2 \text{ Ag(s)} + \text{Cu}^{2+}(\text{ag}) \rightleftharpoons 2 \text{ Ag}^{+}(\text{ag}) + \text{Cu(s)}$$
 $K_{\text{eg}} = 2.7 \times 10^{-16}$ $\text{K} < \text{L}$

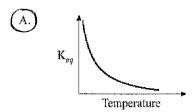
$$K_{eg} = 2.7 \times 10^{-16} \text{ K} < 1$$

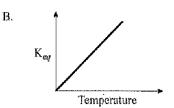
a. E° and ΔG° are both positive.

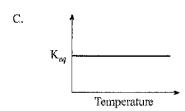
- c. E° is positive and ΔG° is negative.
- b. E° and ΔG° are both negative.
- (d.) E° is negative and ΔG° is positive.
- o, \mathcal{J} . Calculate the standard free energy of the following reaction at 25°C.

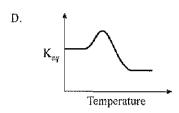
$$Fe^{2+}(aq) + Mg(s) \rightarrow Fe(s) + Mg^{2+}(aq)$$
 $E^{\circ}_{cell} = 1.92 \text{ V}$

a.
$$3.7 \times 10^5 \text{ J}$$


(c.)
$$-3.7 \times 10^5 \text{ J}^-$$


8. Which of the following would cause an increase in the potential of the voltaic cell described by the reaction below?


$$2 \text{ Ag}^{+}(aq) + \text{Fe(s)} \rightarrow 2 \text{ Ag(s)} + \text{Fe}^{2+}(aq)$$


- Increasing [Fe²⁺]
- Adding more Fe(s)

- c.) Decreasing [Fe²⁺]
- Removing some Fe(s)
- 9. The relationship between K_{eq} and temperature for an exothermic reaction is represented by $A \rightarrow B + keat$

10. Consider the following equilibrium:

$$2 \text{ CO(g)} + O_2(g) \rightleftharpoons 2 \text{ CO}_2(g)$$
 $K_c = 4.0 \times 10^{-10}$

$$K_c = 4.0 \times 10^{-10}$$

What is the value of K_c for $2 CO_2(g) \rightleftarrows 2CO(g) + O_2(g)$? Reversed!

- a. 4.0×10^{10}

- b. 2.0×10^{-5} c. 2.0×10^{5} d.) 2.5×10^{9}

$$2 \text{ NO(g)} + \text{Cl}_2(g) \rightarrow 2 \text{ NOCl(g)}$$

$$\Delta H = -77 \text{ kJ/mol}_{rxn}$$
 $\Delta S = -$

- 11. Which of the following statements accurately describes the above reaction?
 - a. The entropy of the products exceeds that of the reactants.
 - NO(g) will always be the limiting reagent.
 - K will be greater than 1 at all temperatures.
 - The temperature of the surroundings will increase as this reaction progresses.