Answer the following questions relating to Fe and its ions, Fe²⁺ and Fe³⁺.

(a) Write the ground-state electron configuration of the Fe²⁺ ion.

$1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ OR [Ar] $3d^6$	1 point is earned for a correct electron configuration.
--	---

Ion	Ionic Radius (pm)
Fe ²⁺	92
Fe ³⁺	79

(b) The radii of the ions are given in the table above. Using principles of atomic structure, explain why the radius of the Fe^{2+} ion is larger than the radius of the Fe^{3+} ion.

Both ions have the same nuclear charge; however, the greater number of electrons in the outermost shell of Fe^{2+} results in greater electron-electron repulsion within that shell, leading to a larger radius.

1 point is earned for a valid explanation.

(c) Fe³⁺ ions interact more strongly with water molecules in aqueous solution than Fe²⁺ ions do. Give one reason for this stronger interaction, and justify your answer using Coulomb's law.

Coulomb's law: $F \propto \frac{q_1 q_2}{r^2}$ (need not be explicitly stated)

In comparison to the Fe²⁺ ion, the Fe³⁺ ion has a higher charge.

OR

1 point is earned for a valid explanation.

The smaller size of $\mathrm{Fe^{3+}}$ allows it to get closer to a water molecule.

A student obtains a solution that contains an unknown concentration of $Fe^{2+}(aq)$. To determine the concentration of $Fe^{2+}(aq)$ in the solution, the student titrates a sample of the solution with $MnO_4^-(aq)$, which converts $Fe^{2+}(aq)$ to $Fe^{3+}(aq)$, as represented by the following equation.

$$5 \; \mathrm{Fe^{2+}}(aq) + \mathrm{MnO_4^-}(aq) + 8 \; \mathrm{H^+}(aq) \; \rightarrow \; 5 \; \mathrm{Fe^{3+}}(aq) + \mathrm{Mn^{2+}}(aq) + 4 \; \mathrm{H_2O}(l)$$

(d) Write the balanced equation for the half-reaction for the oxidation of $Fe^{2+}(aq)$ to $Fe^{3+}(aq)$.

$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$	1 point is earned for the correct half-reaction.
$1e^{-(uq)} \to 1e^{-(uq)+e}$	i point is earned for the correct hair-reaction.