Answer Key for FRQ Practice #8, p144

Nitrogen monoxide, NO(g), can undergo further reactions to produce acids, such as HNO₂, a weak acid with a K_a of 4.0×10^{-4} and a p K_a of 3.40.

- (c) A student is asked to make a buffer solution with a pH of 3.40 by using 0.100 *M* HNO₂(*aq*) and 0.100 *M* NaOH(*aq*).
 - (i) Explain why the addition of 0.100 M NaOH(aq) to 0.100 M HNO₂(aq) can result in the formation of a buffer solution. Include the net ionic equation for the reaction that occurs when the student adds the NaOH(aq) to the HNO₂(aq).

NaOH will neutralize some of the HNO_2 to produce NO_2^{-} . The resulting solution contains a mixture of a weak acid and its conjugate base, which is a buffer solution.	1 point is earned for the recognition that the solution produced is a mixture of a weak acid and its conjugate base.
$\text{HNO}_2 + \text{OH}^- \rightarrow \text{NO}_2^- + \text{H}_2\text{O}$	1 point is earned for the correct net ionic equation.

(ii) Determine the volume, in mL, of 0.100 M NaOH(aq) the student should add to 100. mL of 0.100 M HNO₂(aq) to make a buffer solution with a pH of 3.40. Justify your answer.

The student should add 50.0 mL of 0.100 M NaOH(aq).	1 point is earned for the correct volume.
When half of the HNO ₂ is converted to the conjugate base,	the contect volume.
$[HNO_2] = [NO_2^-]$, therefore the buffer has a pH equal to pK_a .	1 point is earned for clearly indicating a 1 to 1 ratio of
OR	HNO_2 and NO_2^-
$pH = pK_a + \log \frac{[NO_2^-]}{[HNO_2]}$, thus $pH = pK_a$ when $[HNO_2] = [NO_2^-]$	(calculation not required).

(d) A second student makes a buffer by dissolving 0.100 mol of NaNO₂(s) in 100. mL of 1.00 M HNO₂(aq). Which is more resistant to changes in pH when a strong acid or a strong base is added, the buffer made by the second student or the buffer made by the first student in part (c)? Justify your answer.

The buffer made by the second student is more resistant to changes in pH because it contains a higher concentration of HNO_2 and NO_2^- to	1 point is earned for the correct choice and a valid
react with added H ⁺ or OH ⁻ ions.	justification.