a) $\mathrm{P}_{\mathrm{NH}_{3}}$ is unaffected. Because $\mathrm{K}_{\mathrm{p}}=\left(\mathrm{P}_{\mathrm{NH} 3}\right)\left(\mathrm{PH}_{2} \mathrm{~S}\right)$, the amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ present does not affect the equilibrium.
b) $\mathrm{P}_{\mathrm{NH}_{3}}$ decreases. Adding $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~s})$ increases amount of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$, since the solid sublimes. The added $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ shifts equilibrium left to use up $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and re-establish equilibrium, which will use up some $\mathrm{NH}_{3}(\mathrm{~g})$.
c) The mass of $\mathrm{NH}_{4} \mathrm{HS}$ increases, $\underline{\mathrm{K} \text { remains the same. A decrease in volume causes the pressure of each gas }}$ to increase, causing reaction to shift left towards fewer moles of gas to re-establish equilibrium, producing more solid $\mathrm{NH}_{4} \mathrm{HS}$. This leftward shift decreases $\mathrm{P}_{\mathrm{NH}_{3}}$ and $\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}$ back to their initial values, leaving K unchanged.
*Note: only changing the temperature can change the value of K !
d) The mass of $\mathrm{NH}_{4} \mathrm{HS}$ decreases, K increases. Because the reaction is endothermic, increasing temperature will shift the reaction right to use up the added heat, which also uses up some $\mathrm{NH}_{4} \mathrm{~S}$ (s). As the reaction shifts right, $\mathrm{P}_{\mathrm{NH}_{3}}$ and $\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}$ increase, increasing the value of K .

