

- Which of the following statements best describe this graph?
 - $_{\chi}\,$ I. The graph represents a reactant that is second order.
 - ✓ II. The absolute value of the slope for the graph is equal to the rate constant, k.
 - \times III. The units for the rate constant, k will be M^{-1} time⁻¹
 - a) I only
 - b) II only
 - c) I and II only

- 7. As the reaction $A + 2B \rightarrow C$ proceeds at constant temperature, the reaction rate
 - a) remains the same since there is no catalyst present
 - b) remains the same since the temperature is constant
 - c) increases because the rate constant is a large number
 - d) increases because the rate of effective collisions increases over time
 - (e)) decreases because the concentrations of the reactants decrease as the reaction progresses
- 8. For the reaction whose rate law is given below, a plot of which of the following is a straight line?

rate =
$$k[X] \Rightarrow 1^{S+}$$
 order

- a) [X] vs time
- c) ln[X] vs 1/time
- b) 1/[X] vs time
- In[X] vs time
- 9. What are the potential units for the rate constant for the reaction below?

$$A + B \rightarrow C + D$$

$$A + B \rightarrow C + D \qquad \text{rate} = k[A][B]^2 \quad \boxed{3^{rd} \text{ order overall}}$$

$$b) \quad s^{-1} M^{-1} \qquad \qquad (c) \quad s^{-1} M^{-2} \qquad \qquad d) \quad s^{-1} M^{-3}$$

- a) s^{-1}

10.

$$2 \text{ H}_2\text{O} \rightarrow 2 \text{ H}_2 + \text{O}_2$$

Which of the following is true of the relative rates of disappearance of the reactants and appearance of the products?

- a) O₂ appears at twice the rate that H₂O disappears.
- b) H₂ appears at half the rate that H₂O disappears.
- c) H₂ appears at twice the rate that H₂O disappears.
- d) O_2 appears at half the rate that H_2O disappears.

Free Response Practice!

The reaction between bromate ions and bromide ions in acidic aqueous solution is given by the equation:

$$BrO_3(aq) + 5 Br(aq) + 6 H(aq) \rightarrow 3 Br_2(\ell) + 3 H_2O(\ell)$$

The table below gives the results of four experiments.

Experiment	Initial [BrO ₃ ⁻]	Initial [Br ⁻]	Initial [H ⁺]	Measured initial rate (mol/L•s)
1 2× 2 3	0.10 0.20 0.20 0.10	2× (0.10 0.10 0.20 0.10	0.10 0.10 0.20 2x	$ \begin{array}{c} 2\times (8.0 \times 10^{-4}) \\ 1.6 \times 10^{-3} \\ 3.2 \times 10^{-3} \\ 3.2 \times 10^{-3} \end{array} $

- a. Using the data above, determine the order for all three reactants and the overall reaction order.
- b. Write the rate law for the reaction.
- c. What is the value of k, and what are the units of k?
- d. For experiment 4, calculate the amount of BrO₃⁻ remaining when 75% of the H⁺ has reacted.
- e. What is the rate of formation of Br2 in experiment 1?

c.)
$$K = \frac{\text{rate}}{[B_r O_s^{-}][B_r^{-}][H^{+}]^2} = \frac{8.0E-4 M/s}{(0.10 M)^4} = 8.0 M^{-3} s^{-1} \left(\frac{1}{M^3 s}\right)$$

$$\Rightarrow \frac{\Delta E R r_z J}{\Delta t} = 3 \times 8.0 E - 4 M/s = 0.0024 M/s$$