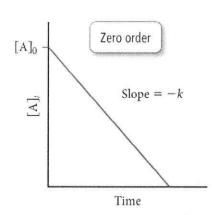
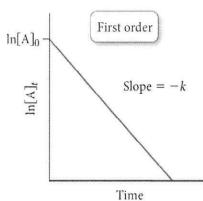

Integrated Rate Laws


Method #2: Go straight! Different orders require different plots to generate straight lines.


To create the needed graphs, set time as your x-axis, and graph three different y-axes (in alphabetical order!)


- C: Concentration of the reactant, [A] vs time
- L: Natural log of the concentration, In[A] vs time
- > R: Reciprocal of the concentration, 1/[A] vs time

The graph which is **most linear** is the one you want!

not AP tested

Note: for each rate order, the absolute value of the slope is equal to the rate constant → IF you pick the correct graph!

$$k = |slope|$$

Order	Rate Law	Units of k	Integrated Rate Law	Straight-Line Plot	Half-Life Expression
0	Rate = $k[A]^0$	M∙s ⁻¹	not on F.C. $[A]_{t} = -kt + [A]_{0}$ $y = mx + b$ $pe-intercept form)$	$y\text{-intercept} = [A]_0$ $Slope = -k$ $Time t$	$t_{1/2} = \frac{[A]_0}{2k} = \frac{1}{k} \frac{[A]_0}{2}$ not Aptested
1	Rate = $k[A]^1$	s ⁻¹	$\ln[A]_t = -kt + \ln[A]_0$ $On F.C.$ $\ln \frac{[A]_t}{[A]_0} = -kt$	y-intercept = $ln[A]_0$ Slope = $-k$	AP tested! $t_{1/2} = \frac{0.693}{k} = \frac{1}{k} (0.693)$ on F.C. 3
2	Rate = $k[A]^2$	$M^{-1} \cdot s^{-1}$	$ \frac{1}{[A]_{t}} = kt + \frac{1}{[A]_{0}} $	$[A]_{L}$ Slobe = k	$\begin{cases} t_{1/2} = \frac{1}{k[A]_0} = \frac{1}{k} \frac{1}{[A]_0} \end{cases}$

Time t

Units for the Rate Constant (k): different depending of your overall reaction order! The AP Test loves to ask you about the correct units for k given a specific rate law.

Remember: the units of rate are always M/time (often, M/sec; be sure to notice which unit of time is used).

To determine the unit of k for a given rate law, you can use dimensional analysis (yum!) or the following handy equation: If $\mathbf{p} = \mathbf{overall}$ rate order (\underline{Sum} of the rate order of each reactant), then:

Units for
$$k = M^{1-p} time^{-1}$$

Now you try! Determine the units of k for each of the following rate laws.

1. Rate =
$$k[NO_2]$$
, overall order of reaction: _____ units of k = _____ time (time^-1)
2. Rate = $k[H_2][NO]^2$, overall order of reaction: _____ units of k = _____ M^2 time (M^-2 time^-1)
3. Rate = $k[H_2O]^0$, overall order of reaction: _____ units of k = _____ M time (M time^-1)
4. Rate = $k[O_3]^2$, overall order of reaction: _____ units of k = _____ M time (M^-1 time^-1)

Multiple Choice Practice!

Questions 1-3 refer to the following reaction and rate laws. $A + B \rightarrow C$

- (A) Rate = k [A]
- (B) Rate = $k [A]^2$
- (C) Rate = $k [A][B]^2$
- (D) Rate = $k [A]^2 [B]$
- (E) Rate = k [B]
- 2. Which represents a reaction that is second order with respect to reactant A and is third order overall?
- 3. Which represents a reaction that is zero order with respect to reactant B and is second order overall?
- 4. For the reaction whose rate law expression is rate $= k[X]^2$, a plot of which of the following is a straight line?
 - a) [X] versus time \mathcal{O}^{+h}

- b) -[X] versus 1/time- never
- (c) 1/[X] versus time
- d) In [X] versus time 1^{S+}
- e) In [X] versus 1/time neve
- 5. Each of the following factors can affect the rate of a chemical reaction EXCEPT
 - a) increasing temperature $\uparrow T = \uparrow k$
 - b) decreasing reactant concentration & [reactants] = & rate
 - c) adding a catalyst by definition
 - (d)) removing products
 - e) breaking up solid reactants 1 Surface area = Trate