Enthalpy of Formation (ΔH_f) ## Calculating Enthalpy Changes of Reactions from Heat of Formation Standard enthalpy (heat) of formation ($\triangle H_{\mathfrak{p}}^{\circ}$): change in enthalpy that accompanies the formation of \square mole of the compound in its standard state from its component <u>elements</u> their standard states. Note: The naught, ____, simply indicates standard conditions (1 atm and 25°C). $$\Delta H_f^{\circ}$$ = -74.9 kJ/mol_{rxn} $$S_{(S)} + \frac{3}{2} O_{2(g)} \rightarrow SO_3(g)$$ $$\Delta H_f^{\circ} = -396 \text{ kJ/mol}_{\text{rxn}}$$ Note: you will see <u>fractional</u> coefficients to ensure only <u>1</u> mole of compound is formed. The ΔH_f° for <u>elements</u> (in their standard state) is always $\frac{\phi}{\phi}$ kJ/mol_{rxn}! Now you try! Write the formation reaction of NH₃: $\frac{1}{2}N_{2(g)} + \frac{3}{2}H_{2(g)} \rightarrow NH_{3(e)}$ The enthal py change for a chemical reaction, or amount of heat released or absorbed, can be determined by the following formula, which is known as Big Momma's Equation: $$\Delta H_{rxn}^{\circ} = \Sigma \left[n \Delta H_f^{\circ}(products) \right] - \Sigma \left[n \Delta H_f^{\circ}(reactants) \right]$$ $\left[\begin{array}{c} \circ h \\ F.C. \end{array} \right]$ $$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$ $$\Delta H_{rxn}^{\circ} = \Delta H_{comb}^{\circ} = \left[\Delta H_{f}^{\circ} (co_{2}) + 2 \cdot \Delta H_{f}^{\circ} (H_{2}O) \right] - \left[\Delta H_{f}^{\circ} (cH_{4}) + 2(\phi) \right]$$ ## **Enthalpy Changes of Different Types of Reactions** You will encounter a variety of Subscripts following the ΔH , however, they are simply indicating a <u>reaction</u> type of reaction or change of state. Examples ΔH_{comb}° = Enthalpy of Combustion (Heat Energy Released during Combustion Reactions) ΔH_{neut}° = Enthalpy of Neutralization (Heat Energy Released during Acid-Base Neutralization Reactions) ΔH_{Soln}° = Enthalpy of Solution (Heat Energy Released/Absorbed Dissolving a Solute in Water) ΔH_{vap}° = Enthalpy of Vaporization (Heat Energy Absorbed to Convert from Liquid to Gas Phase) ΔH_{fus}° = Enthalpy of Fusion (Heat Energy Absorbed to Convert from Solid to Liquid Phase) ### Let's Practice! 1. For each reaction below, fill in the box with a subscript that specifies the type of reaction: a. $$NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$$ $$\Delta H_{\text{Neut}} = -55.8 \text{ kJ/mol}$$ b. $H_2O(s) \rightarrow H_2O(l)$ $$\Delta H_{\text{LuS}} = +6.02 \text{ kJ/mol}$$ c. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ $$H_2(g)$$, $Hg(s)$, $CO_2(g)$, $H_2O(l)$, $Br_2(l)$, $N_2(l)$ not $l \in room temp!$ 3. Write a balanced molecular equation representing the enthalpy for standard heat of formation reaction of ethanol, C₂H₅OH(I). 4. Use the information provided and the balanced equation to determine ΔH_f° of carbon tetrachloride. $$CH_4(g) + 4 \ Cl_2(g) \rightarrow CCl_4(g) + 4 \ HCl(g) \qquad \Delta H^\circ_{rxn} = -389 \ kJ/mol_{rxn}$$ | Substance | ΔH°r | |-----------|---------------------------| | CH₄(g) | –75 kJ/mol _{rxn} | | HCl(g) | −92 kJ/mol _{rxn} | $$\Delta H_{rxh}^{\circ} = -389 \frac{KJ}{m_{o}l_{rxh}} = \sum_{n} \Delta H_{f}^{\circ} (pr) - \sum_{n} \Delta H_{f}^{\circ} (re)$$ $$= \left[CCl_{4} + 4Hcl \right] - \left[CH_{4} + 4Cl_{2} \right]$$ $$= \left[CCl_{4} - 4(-92) \right] - \left[-75 + 4(\phi) \right]$$ $$-389 = CCl_{4} - 293 \Rightarrow \Delta H_{f}^{\circ} (CCl_{4}) = \left[-96 \frac{KJ}{mol_{rxh}} \right]$$