A Brief Summary of Rate Laws

- indea: there are _____ types of rate laws!
- Differential rate law: data table contains <u>Concentration</u> and <u>rate</u> data. Compare change in rate when one reactant is held constant but another doubles to determine the order of the reactants and the value of the rate constant, k.
- * Integrated rate law: data table contains <u>Concentration</u> and <u>time</u> data. (BE CAREFUL: the Tro textbook calls this the 'differential rate law'!!) Use graphical methods determine the order of a given reactant and the value of the rate constant k.

Integrated Rate Laws Review: set time as your x-axis, and graph three different y-axes (in alphabetical order!)

Order	Rate Law	Linear Plot	Straight Line Equation	Half-life
0 th	$Rate = k[A]^0 = k$	Concentration, [A] vs time	$[A]_t - [A]_0 = -kt$	totally exists. (but not AP tested)
1 st	Rate = k[A] ¹	Natural log, In[A] vs time	$Ln[A]_t - Ln[A]_0 = -kt$	$t_{1/2} = \frac{\ln(2)}{k} = \frac{0.693}{k}$
2 nd	Rate = $k[A]^2$	Reciprocal, 1/[A] vs time	$\frac{1}{[A]_t} - \frac{1}{[A]_t} = kt$	totally exists. (but not AP tested)

The AP test focuses on the half-life of 1st order reactions only!! They are the only types of reactions for which the length of a half-life is Constant conly changes if temp. changes, Not

In a first order reaction, the half-life equation is as follows:

$$t_{1/2} = \frac{\ln(2)}{k} = \frac{0.693}{k}$$
 on F.C.

Half-Life for a First-Order Reaction

Let's Practice!

- 1. A certain first order reaction has a half-life of 20.0 minutes.
 - a. Calculate the rate constant for this reaction.

$$t_{v_2} = \frac{0.693}{k} = 20.0 \,\text{min} \Rightarrow k = \frac{0.693}{20.0 \,\text{min}} = 3.47 \times 10^{-2} \,\text{min}^{-1}$$

b. How much time is required for this reaction to be 75% complete?

100%
$$\longrightarrow$$
 50% \longrightarrow 25% left = 75% complete
 $t_{1/2}$ 2. $t_{1/2}$ 2. $t_{1/2}$ = 2 (20.0 min) = [40.0 min]

2. Dinitrogen pentoxide decomposes according to the equation

 $N_2O_5 \rightarrow NO_3 + NO_2$

The following data were collected for this reaction at a given temperature:

	O_{kh}	15+	2 ^{hd}		
	[N ₂ O ₅]	In[N ₂ O ₅]	1/[N ₂ O ₅]	Time (sec)	
	1.00	0.00) 0.20	1.00 10 22	0	
	0.82	-0.20	1.22) 0.26	25	
	0.68 0.14	-0.39 0.70	1.48	50	
1 .	0.56 0.12	-0.59	1.80	75	_ /+
七% ^	0.46	-0.78	2.18	100	Lyz
	0.38	-0.98	2.65	125	
\	0.31	-1.17	3.23	150	

a) What is the order of this reaction? Write the rate law expression. Justify your answer (you may include a sketch of a graph as part of your explanation). 1St order w/ respect to N2Os, b/c a plot of In [N2Os] vs. time will be linear w/a negative Slope (as shown by the approximately constant rate of change in In [N2Os] every 25 Sec).

b) Determine the value of the rate constant for this reaction (including units).

$$K = |S|ope| = \left| \frac{\Delta y}{\Delta x} \right| = \left| \frac{\Delta \ln [N_2 O_5]}{\Delta time} \right| = \left| \frac{-0.20 - \emptyset}{25 - \emptyset} \right| = \frac{0.20}{25} = \left[0.0080 s^{-1} \right]$$

c) Determine the half-life for the reaction under the conditions of this experiment.

$$t_{1/2} = \frac{0.693}{K} = \frac{0.693}{0.0080} = \boxed{875} \times \text{matches}$$