Gas Stoichiometry: At STP and non-STP

3. 0.500 L of $H_2(g)$ reacts with excess $O_2(g)$ at STP according to the equation: $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$ What volume of water is produced?

according to the following equation? $2 C(s) + O_2(g) \rightarrow 2 CO(g)$ not @ STP. use PV=nPt

$$PV = nRT$$

 $(0.247 atm)(543L) = n(0.08206 \frac{latm}{molk})(300.k)$
 $n = 5.45 mol CO \times \frac{2 mol C}{2 mol CO} \times \frac{12.01gC}{1 mol C} = \frac{[05.5gC]}{}$

5. Air bags in cars are inflated by the sudden decomposition of sodium azide, NaN3, by the following reaction: 2 NaN₃(s) \rightarrow 3 N₂(g) + 2 Na(s). What volume of nitrogen gas, measured at 1.30 atm and 87°C, would be produced by the reaction of 70.0 g of NaN₃?

Molarity Stoichiometry: Solutions to All Your Problems

*Note: millimoles (or mmol) can be your BEST friend during solution stoich!

$$\frac{mmol}{mL} = M$$

1. 250 mL of 0.70 M Li₃PO₄ and 250 mL of excess Ca(OH)₂ are mixed, producing an aqueous LiOH solution (and a calcium phosphate precipitate). What is the molar concentration of LiOH in this solution?