Gas Laws Math S	Summary
-----------------	---------

Ideal Gas Law	Combined Gas Law	Dalton's Law and Mole Fractions	Molar Volume	Molar Mass Kitty Cat	Gas Stoich
PV = nRT	$\frac{P_1 V_1}{n_1 T_1} = \frac{P_2 V_2}{n_2 T_2}$	$P_{total} = P_1 + P_2 + \cdots$ $P_A = P_{total} \times X_A$ where $X_A = \frac{\text{moles } A}{\text{total moles}}$	1 mol = 22.4 L at STP	$MM = \frac{DRT}{P} = \frac{mRT}{PV}$	One chemical (g, mol, L) → another chemical (g, mol, or L)
Use when you have <u>only one</u> of each variable	Use when conditions have <u>changed</u>	Use when you have a mixture of gases	Use to convert between quantity and volume of a gas	Use to calculate gas density	Use to convert from one chemical to a different chemical
 Things to watch for: Temp: need K Choose R based on unit for pressure Volume: need L 	 Things to watch for: Temp: need K Units for each variable need to be the same on both sides 	 Things to watch for: Gas collection over water (or collection by water displacement): pure gas is mixed with <u>water vapor</u> 	Only true at STP!!! (273 K, 1.0 atm)	Potential shortcut When at STP: $D = \frac{molar \ mass}{22.4 \ L}$	Two types: • L → L (at same T and P) • Non-STP (or NOT at same T and P): use stoich for mol → mol, and use PV=nRT for L ↔ mol

Gas Laws Conceptual Summary

- 1. <u>Temperature is directly proportional to average kinetic energy</u>, which means:
 - a. Same temperature = same average kinetic energy!
 - b. Same temperature, different gases? High molar mass = slower, low molar mass = faster
 - c. Same gas, different temperature? Higher temperature = faster, lower temperature = slower
- 2. <u>Kinetic Molecular Theory</u> (5 postulates): gas particles are vert small and very far apart; are in constant, rapid, random motion; bounce off things with no energy loss (elastic collisions); do not attract or repel (negligible IMFs), kinetic energy directly proportional to velocity

3. Ideal vs Real Gases

- a. Ideal gases: follow KMT postulates (most ideal at high T, low P)
- b. Real gases: have actual volume or attractive forces (most real at low T, high P)