Gas Laws Math Summary

Ideal Gas Law	Combined Gas Law	Dalton's Law and Mole Fractions	Molar Volume	Molar Mass Kitty Cat	Gas Stoich
$\mathrm{PV}=\mathrm{nRT}$	$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{n}_{1} \mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} V_{2}}{\mathrm{n}_{2} \mathrm{~T}_{2}}$	$\begin{gathered} \mathrm{P}_{\text {total }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\cdots \\ \mathrm{P}_{A}=\mathrm{P}_{\text {total }} \times \mathrm{X}_{\mathrm{A}} \\ \text { where } \mathrm{X}_{\mathrm{A}}=\frac{\text { moles }}{\text { total moles }} \end{gathered}$	$\begin{gathered} 1 \mathrm{~mol}=22.4 \mathrm{~L} \\ \text { at STP } \end{gathered}$	$M M=\frac{D R T}{P}=\frac{m R T}{P V}$	One chemical (g, mol, L) \rightarrow another chemical (g, mol, or L)
Use when you have only one of each variable	Use when conditions have changed	Use when you have a mixture of gases	Use to convert between quantity and volume of a gas	Use to calculate gas density	Use to convert from one chemical to a different chemical
Things to watch for: - Temp: need K - Choose R based on unit for pressure - Volume: need L	Things to watch for: - Temp: need K - Units for each variable need to be the same on both sides	Things to watch for: - Gas collection over water (or collection by water displacement): pure gas is mixed with water vapor	Only true at STP!!! (273 K, 1.0 atm)	Potential shortcut When at STP: $D=\frac{\text { molar mass }}{22.4 \mathrm{~L}}$	Two types: - $L \rightarrow L$ (at same T and P) - Non-STP (or NOT at same T and P): use stoich for $\mathrm{mol} \rightarrow$ mol, and use $P V=n R T$ for L $\leftrightarrow \mathrm{mol}$

Gas Laws Conceptual Summary

1. Temperature is directly proportional to average kinetic energy, which means:
a. Same temperature = same average kinetic energy!
b. Same temperature, different gases? High molar mass = slower, low molar mass = faster
c. Same gas, different temperature? Higher temperature = faster, lower temperature = slower
2. Kinetic Molecular Theory (5 postulates): gas particles are vert small and very far apart; are in constant, rapid, random motion; bounce off things with no energy loss (elastic collisions); do not attract or repel (negligible IMFs), kinetic energy directly proportional to velocity

3. Ideal vs Real Gases

a. Ideal gases: follow KMT postulates (most ideal at high \mathbf{T}, low \mathbf{P})
b. Real gases: have actual volume or attractive forces (most real at low T, high P)

