AP Chemistry Exam Review Free Response Practice #9

2018 #3, shortened, (4 points)

Answer the following questions relating to Fe and its ions, Fe²⁺ and Fe³⁺.

a. Write the ground-state electron configuration of the Fe^{2+} ion.

Ion	Ionic Radius (pm)
Fe ²⁺	92
Fe ³⁺	79

b. The radii of the ions are given in the table above. Using principles of atomic structure, explain why the radius of the Fe^{2+} ion is larger than the radius of the Fe^{3+} ion.

c. Fe³⁺ ions interact more strongly with water molecules in aqueous solution than Fe²⁺ ions do. Give one reason for this stronger interaction, and justify your answer using Coulomb's law.

A student obtains a solution that contains an unknown concentration of $Fe^{2+}(aq)$. To determine the concentration of $Fe^{2+}(aq)$ in the solution, the student titrates a sample of the solution with $MnO_4^-(aq)$, which converts $Fe^{2+}(aq)$ to $Fe^{3+}(aq)$, as represented by the following equation.

$$5 \text{ Fe}^{2+}(aq) + \text{MnO}_4^-(aq) + 8 \text{ H}^+(aq) \rightarrow 5 \text{ Fe}^{3+}(aq) + \text{Mn}^{2+}(aq) + 4 \text{ H}_2\text{O}(l)$$

d. Write the balanced equation for the half-reaction for the oxidation of $Fe^{2+}(aq)$ to $Fe^{3+}(aq)$.