AP Chemistry Exam Review

Free Response Practice \#8

2017 \#3, shortened, 5 points
Nitrogen monoxide, $\mathrm{NO}(\mathrm{g})$, can undergo reactions to produce acids such as HNO_{2}, a weak acid with a K_{a} of 4.0×10^{-4} and a pK_{a} of 3.40.
a. A student is asked to make a buffer solution with a pH of 3.40 by using $0.100 \mathrm{M} \mathrm{HNO}_{2}$ (aq) and 0.100 M $\mathrm{NaOH}(\mathrm{aq})$.
i. Explain why the addition of $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ to $0.100 \mathrm{M} \mathrm{HNO}_{2}(\mathrm{aq})$ can result in the formation of a buffer solution. Include the net ionic equation for the reaction that occurs when the student adds the $\mathrm{NaOH}(\mathrm{aq})$ to the $\mathrm{HNO}_{2}(\mathrm{aq})$.
ii. Determine the volume, in mL , of $0.100 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ the student should add to 100 . mL of $0.100 \mathrm{M} \mathrm{HNO}_{2}(\mathrm{aq})$. to make a buffer solution with a pH of 3.40 . Justify your answer.
b. A second student makes a buffer by dissolving 0.100 mol of $\mathrm{NaNO}_{2}(\mathrm{~s})$ in $100 . \mathrm{mL}$ of $1.00 \mathrm{M} \mathrm{HNO}(\mathrm{aq})$. Which is more resistant to changes in pH when a strong acid or a strong base is added, the buffer made by the second student or the buffer made by the first student in part (c)? Justify your answer.

