AP Chemistry Exam Review Free Response Practice #5

$$2 \text{ NO(g)} + \text{Br}_2(g) \rightarrow 2 \text{ NOBr(g)}$$

1. The following results were obtained in experiments designed to study the rate of the reaction above.

Experiment	Initial Concentration (mol/L)		Initial Rate of Appearance
	[NO]	$[Br_2]$	of NOBr (M/sec)
1	0.02	0.02	9.6 × 10 ⁻²
2	0.04	0.02	3.8×10^{-1}
3	0.02	0.04	1.9×10^{-1}

a. Write the rate law for the reaction. Justify. [3 points]

b. Calculate the value of the rate constant, *k*, for the reaction. Include units. [2 points]

c. Determine the initial rate of the reaction in experiment 1. [1 point]

d. Which sof the following reaction mechanisms is consistent with the rate law established in (a)? Explain your choice. [2 points]

I.
$$NO + NO \rightleftharpoons N_2O_2$$
 (fast)

$$N_2O_2 + Br_2 \rightarrow 2NOBr$$
 (slow)

II.
$$Br_2 \rightarrow Br + Br$$
 (slow)

$$2(NO + Br \rightarrow NOBr)$$
 (fast)