Unit 3: AP Free Response Practice #1/[2010B #3, 10 points]

1. A sample of ore containing the mineral tellurite, TeO₂, was dissolved in acid. The resulting solution was then reacted with a solution of K₂Cr₂O₇ to form telluric acid, H₂TeO₄. The unbalanced chemical equation for the reaction is given below.

below. $_{+4_{J}-2}$ $_{+6_{J}-2}$ $_{+1}$ $_{+1_{J}+6_{J}-2}$ $_{+3}$ $_{+1_{J}-2}$ $_{.3}$. TeO₂(s) + . . . Cr₂O₇²⁻(aq) + . 8 . H⁺(aq) \rightarrow . 3 . H₂TeO₄(aq) + . 2 . Cr³⁺(aq) + . 1 . H₂O(l)

- a. Identify the molecule or ion that is being oxidized in the reaction. [1 point]
- b. Give the oxidation number of Cr in the $Cr_2O_7^{2-}$ (aq) ion. [1 point]
- c. Balance the chemical equation above by writing the correct lowest whole-number coefficients on the dotted lines. [2 points]

In the procedure described above, 46.00 mL of 0.03109 M $K_2Cr_2O_7$ was added to the ore sample after it was dissolved in acid. When the chemical reaction had progressed as completely as possible, the amount of unreacted (excess) $Cr_2O_7^{2-}$ (aq) was determined by titrating the solution with 0.110 M Fe(NO₃)₂. The reaction that occurred during the titration is represented by the following balanced equation.

$$6 \operatorname{Fe}^{2+}(aq) + \operatorname{Cr}_2 \operatorname{O}_7^{2-}(aq) + 14 \operatorname{H}^+(aq) \rightarrow 2 \operatorname{Cr}^{3+}(aq) + 6 \operatorname{Fe}^{3+}(aq) + 7 \operatorname{H}_2 \operatorname{O}(l)$$

A volume of 9.85 mL of 0.110 M Fe(NO₃)₂ was required to reach the equivalence point.

- d. Calculate the number of moles of excess $Cr_2O_7^{2-}$ (aq) that was titrated. [2 points]
- e. Calculate the number of moles of Cr₂O₇²⁻(aq) that reacted with the tellurite. [2 points]
- f. Calculate the mass, in grams, of tellurite that was in the ore sample. [2 points]

	a) TeO2 or Te4+ (no point for	'Te")
	b) +6	
· · · · · · · · · · · · · · · · · · ·	c) ox	red
	TeO2 > H2TeO4	$Cr_2O_2^{2-} \rightarrow Cr^{3+}$
	2H2O + Te O2 -> H2Te O4 + 2H+	Cr2 022> 2 Cr3+
		14H++ Cr2 072> 2Cr3++7H20
(2H2C) + Te O2 > H2 Te O4 + 2H+ 2e-)	x3
	144	++Cr2O22+6e->2C13++7H2O
	<u></u>	
-	3Te Oz(s) + Cr2 O7 (99) + 8H	+(aq) -> 3 H2 Te O4 (ag) + 2 Cr 3+ (ag) + H2 O(e)
<u>a)</u>	0.00985 L x 0.110M = 0.0010	8 mol Fe (NOz) 2 x I mol Fe 2+ x I mol Co, Oz 2-
) _		Ind Fe(NO3)2 6 mol Fe 2+
<i>-</i>	= 1.81 ×10	>-4 mol Cr2 O72-
	(or D, C	000 181 mol)

mol $C_{r_2}O_2^{2^-}$ added = 0.04600 L x 0.03169 M = 0.001430 mol $K_2C_{r_2}O_{r_2}$ $\frac{1}{1001}K_2C_{r_2}O_{r_2}$ $\frac{1}{1001}K_2C_{r_2}O_{r_2}$ added = 0.001430 - 0.000181 = 0.001249 mol $C_{r_2}O_2^{2^-}$ $\frac{3}{1001}C_{r_2}O_2^{2^-}$ $\frac{3}{1001}C_{r_2}O_2^{2^-}$ $\frac{3}{1001}C_{r_2}O_2^{2^-}$ $\frac{1}{1001}C_{r_2}O_2^{2^-}$ $\frac{1}{1001}C_{r_2}O_2^{2^-}$ $\frac{1}{1001}C_{r_2}O_2^{2^-}$ $\frac{1}{1001}C_{r_2}O_2^{2^-}$ $\frac{1}{1001}C_{r_2}O_2^{2^-}$ $\frac{1}{1001}C_{r_2}O_2^{2^-}$	e) total moles Cr. Oz that reacted = mol Cr. Dz added-excess Cr. Dz titro
$= 0.001430 \text{ mol } Cr_z O_z^{2-} \text{ added}$ $\Rightarrow \text{mol } Cr_z O_z^{2-} \text{ that } \text{ reacted} = 0.001430 - 0.000181 = [0.001249 \text{ mol } Cr_z O_z^{2-}]$ $f) 0.001249 \text{ mol } Cr_z O_z^{2-} \xrightarrow{3} \text{ mol } \text{Te } O_z \xrightarrow{1} 159.6 \text{ g Te } O_z = [0.5980 \text{ g Te } O_z]$	
f) 0.001249 mol Cr2 O7 × 3 mol Te Dz × 159.69 Te Oz = 0.59809 Te Oz	
f) 0.001249 mol $Cr_2 O_2^{2-}$, 3 mol $Te O_2$ $S9.69 Te O_2$ = 0.5980g $Te O_2$ $Imol Cr_2 O_3^{2-}$ $Imol Te O_2$	\Rightarrow mol $Cr_2 O_7^{2-}$ that reacted = 0.001430 - 0.000181 = 0.001249 mol $Cr_2 O_7^{2-}$
	f) 0.001249 mol Cr2O2 x 3 mol TeO2 x 159.6g TeO2 = 0.5980g TeO2 I mol Cr2O2 I mol TeO2
	•