Free Response Practice (1991 form B)

- 1. Answer the following questions about BeC2O4 and its hydrate.
 - a. Calculate the mass percent of carbon in the hydrated solid with the formula BeC2O4 '3 H2O. (2 points)
 - b. When heated to 220.°C, BeC₂O₄·3 H₂O dehydrates completely as represented below:

$$BeC_2O_4:3H_2O(s) \rightarrow BeC_2O_4(s)+3H_2O(g)$$

If 3.21 g of BeC₂O₄·3 H₂O is heated to 220.°C, calculate each of the following:

- i. The mass of BeC2O4 formed. (1 point)
- ii. The volume of H₂O(g) released, measured at 220.°C and 735 mmHg. (2 points)

A student repeats the dehydration from part (b) in an attempt to experimentally determine the number of moles of water in one mole of $BeC_2O_4 \cdot 3 H_2O$. The student collects the data shown in the table below.

Mass of empty crucible	36.48 g
Initial mass of sample and crucible	39.69 g
Mass of sample and crucible after first heating	38.82 g

- c. Use the data above to:
 - i. Calculate the total number of moles of water lost when the sample was heated. (1 point)
 - ii. Determine the formula of the hydrated compound. (2 points)
- d. Is the student's experimentally determined waters of hydration greater than, less than, or equal to the waters of hydration in the accepted formula? Provide a reasonable explanation for error and how this error affected the student's results. (2 points)

(a)
$$\frac{9}{8}$$
 C = $\frac{2(12.01)}{151.078}$ × $100 = 15.90\%$
 151.078 | $100 = 15.90\%$
(b) (i) 3.21 g BeC₂O₄·3H₂O₂ | 100 BeC₂O₄·3H₂O₃ | 100 BeC₂O₄·3H₂O
$$= 0.0212 \text{ mol BeC}_2\text{O}_4 \times 97.03\text{ g} = 2.06 \text{ g} \text{ BeC}_2\text{O}_4$$

$$= 0.0212 \text{ mol BeC}_2\text{O}_4 \times 97.03\text{ g} = 2.06 \text{ g} \text{ BeC}_2\text{O}_4$$

$$= 100 \text{ lmol BeC}_2\text{O}_4 \cdot 3H_2\text{O}_2$$

$$= 100 \text{ lmol BeC}_2\text{O}_4 \cdot 3H_2\text{O}_$$

⁽d) next page

(d) Less than! (experimental = BeCzO4. 2HzO,	
accepted = BeCzO4·3H2O)	
It is unlikely that all HzD was driven off after I heating, so the	
It is unlikely that all H2O was driven off after I heating, so the measured mass of anhydrate will be too high (blc it still contains H2O) and the	
calculated mass of H2O will be too low. Thus, the mole ratio as shown in the	
experimentally determined hydrate formula will show less waters of hydration	
than in the accepted formula.	