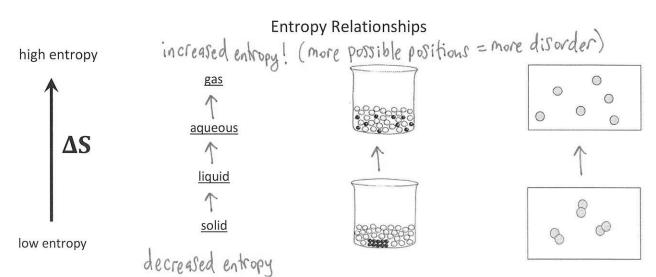
Entropy: Let the chaos begin!

Entropy can be considered the extent of randomness or disorder in a chemical or physical system.

- The second law of thermodynamics states that entropy of the universe will <u>increase</u> over time.
 - o + ΔS implies increasing entropy and ΔS implies decreasing entropy
 - o Nature tends towards + (increasing) entropy !
- The more <u>politions</u> available (the more space, or more places something can move) the greater the entropy.

The entropy change for a system (Δ) is calculated from the absolute entropies of the products and reactants.


$$\Delta S_{system}^{\circ} = \sum [S^{\circ}(products)] - \sum [S^{\circ}(reactants)] \qquad] \circ_{N} \text{ F.C. } \mathcal{C}$$
Units of Entropy:
$$\left\{ \frac{J}{\text{mol-K}} = J \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \right\}$$

Entropy of an element in its most stable form is NOT zero!

- The third law of thermodynamics states that the entropy of a perfect, pure crystal at <u>2000</u> K is given a value of zero.
- Thus, all absolute entropies for substances in the <u>real</u> world (above 0 K, not a pure substance, not perfect crystals) are + → even elements!

Two biggest factors for evaluating ΔS_{rxn}

- 1) Change in State of matter (gas \Rightarrow aqueous \Rightarrow liquid \Rightarrow solid)
- 2) Change in # of particles $(\land \uparrow)$ particles = $\land \uparrow$ places for particles to be = $\land \uparrow$ entropy)

In order of lowest to highest entropy:

Rules for comparing entropy of individual molecules or materials:

- → Entropy with <u>higher</u> temperature: more motion, more possible arrangements
- → Entropy ↑ if substance <u>dissolves</u> in a solvent: more possible arrangements
- \rightarrow Entropy of a <u>998</u>:
 - <u></u>with <u>↑</u> pressure
 - ↑ with ↑ volume
- → Entropy is _____ for ______ bonded compounds than for very strong covalent bonds: atoms have more wiggle room, more positional entropy
- → Entropy T as the <u>Complexity</u> (# of atoms, # of heavier atoms, # of e⁻, etc) of a molecule T

Examples:

Less Entropy	More Entropy	Why?	
diamond	graphite	Graphite has fewer bonds, more possible arrangements	
butane gas (2 atm)	butane gas (1 atm)	Decreasing gas pressure increases volume, allowing more possible positions	
F₂(g)	Cl ₂ (g)	$Cl_2(g)$ has more electrons/molar mass than $F_2(g)$, thus more possible arrangements of particles	

Practice:

1)	For the following reactions	is the entropy	of the reaction	increasing or	decreasing?
----	-----------------------------	----------------	-----------------	---------------	-------------

a.
$$2 NO_2(g) \rightarrow N_2O_4(g)$$

b.
$$H_2(g) + Br_2(g) \rightarrow 2 HBr(g)$$

c.
$$Cu(s) + 4HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2NO_2(g) + 2H_2O(l)$$
 Entropy is in Creasing Why?

- 2) Place the following in order of increasing entropy:
 - a) methane (CH₄), propane (C₃H₈), ethane (C₂H₆) CH₄, C₂H₆, C₃H₈ ($\uparrow \# 9 \uparrow MS = \uparrow S$)
 - b) NaCl(s), Licl(s), RbCl(s), Kcl(s) Licl, Nacl, Kcl, RbCl (1MM/#e-=15)
 - c) O_2 (1 atm), O_2 (3 atm), O_2 (0.25 atm) 3 9tm, 1 9tm, 0.25 atm (IP = TV = TS)