Enthalpy and Thermochemical Equations

Enthalpy Change (ΔΗ): amount of energy <u>absorbed</u> system per mole of reaction (mol_{rxn}) when the pressure is constant; measured in units of $\sqrt{m_{\rm bl/x_b}}$ Imolrxn

$$\Delta H_{rxn} = \frac{q}{mol_{rxn}}$$

Endothermic Reaction

Exothermic Reaction

- The magnitude of enthalpy change is directly proportional to the <u>MoleS</u> of reactants and products involved in the change.
- Activation energy is the minimum amount of energy the reactants need for the reaction to proceed.

Thermochemical equation: chemical equation that includes the enthalpy change (the energy value)

energy enters! Endothermic	energy exits	Exother	mic Ifcels warm	
Energy is absorbed	by system	Energy is <u>(eleased</u> by system		
Heat energy from surroundings is changed to potential energy of the system – temperature of the system doesn't necessarily increase!		<u>Potential</u> energy of the system is changed to heat energy of the surroundings – temperature of the system doesn't necessarily decrease!		
$\frac{+q}{\mathrm{mol}_{\mathrm{rxn}}} = +\Delta H_{\mathrm{rxn}}$		$\frac{-q}{\text{mol}_{\text{rxn}}} = -\Delta H_{\text{rxn}}$		
Break "end" bonds/attractions		Form new bonds /attractions		
The energy required to break reactant bonds is <u>qreater</u> than the energy released by forming product bonds.		The energy required to break reactant bonds is less than the energy released by forming product bonds.		
Energy appears in reactants		Energy appears in products		
3 examples of the SAME information:		3 examples of the SAME information:		
$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$	ΔH _{rxn} = +92 kJ/mol _{rxn}	N ₂ + 3 H ₂	→ 2 NH ₃	$\Delta H_{rxn} = -324$ kJ/mol_{rxn}
positive = add(+) to <u>reactants</u>		negative = add(+) to products		
92 KJ + NH ₃ + H ₂ O → NH ₄ ⁺ + OH ⁻		N ₂ + 3	H ₂ → 2 N	IH3 + 324 KJ

Phase changes and enthalpy:

Let's Try! Complete the chart below.

Equation with Separate ΔH ^o _{rxn}	$\Delta extsf{H}^{\circ}_{ extsf{rxn}}$ within the Equation	Endo- or exothermic?	
K+M -> N AH"=-45 Malron	K + M → N + 45 kJ	e×o	
$D \rightarrow E + F$ $\Delta H^{\circ}_{rxn} = 127 \text{ kJ/mol}_{rxn}$	D+127KJ→E+F	endo	
$A + B \rightarrow C + D$ $\Delta H^{\circ}_{rxn} = -35 \text{ kJ/mol}_{rxn}$	A+B -> C+D + 35 KT	exo	

1. What is the change in enthalpy (ΔH) for the reaction

2. Is this reaction endothermic or exothermic?

3. What is the change in enthalpy ($\Delta H)$ for the reaction

4. Is this reaction endothermic or exothermic?

5. For each example below, identify if the process is endothermic or exothermic, and explain why.

Process	Endo or Exothermic?	Why?
$H(g) + H(g) \rightarrow H_2(g)$	ехо (-ДН)	forming new bond
$F(g) + e^- \rightarrow F^-(g)$	exo (-4H)	forming an attraction
$F^{-}(g) \rightarrow F(g) + e^{-}$	endo (+AH)	ending an attraction
$N_2(g) \rightarrow N_2(I)$	exo(-AH)	, going to a lower energy phase

Georging IMFs! (attractions)