In an electrolytic cell, the amount of product made is related to the number of electrons transferred. Essentially, the electrons are a reactant. To solve, use the formula for current from the periodic table and follow the following steps:

1. Convert your time, t, into seconds.

S (Seconds)

2. Multiply your time (sec) by the current (Amp) to solve for the charge (q) in Coulombs.

$$I = \frac{q}{t} \rightarrow q = t \cdot I$$

I = current (amperes, A) q = charge (coulombs, C) t = time (sec)

$$Amp = \frac{C}{sec}$$

3. Divide by Faraday's constant (given on the formula chart) to convert Coulombs into moles of electrons.

$$q/F = mol e^{-}$$

Faraday's constant, F, is the charge on 1 mole of electrons.

Use F = 100,000 (1E5) for multiple choice!

$$x = \frac{1}{c}$$

- *Note: a "faraday" can be used to refer to the number of moles of electrons being transferred:
 - "3 faradays" → 3 moles of e⁻ of transferred
 - "0.25 faradays" → 0.25 moles of e⁻ of transferred

4. Use the appropriate half-reaction to determine the moles of the metal formed.

For example,

$$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$$

This indicates for every 3 moles of electrons gained, 1 mole of solid gold is formed.

5. Use molar mass to convert from moles to grams of metal.

Example: Gold can be plated out of a solution containing Au³⁺ according to the half-reaction:

$$Au^{3+}(aq) + 3e^{-} \rightarrow Au(s)$$

What mass of gold (in grams) is plated by a 25 minute flow of 5.5 A current?

Solution:
$$25 \text{ min} \times \frac{60 \text{ s}}{1 \text{ min}} \times \frac{5.5 \text{ C}}{1 \text{ s}} \times \frac{1 \text{ mol e}}{96,485 \text{ C}} \times \frac{1 \text{ mol Au}}{3 \text{ mol e}} \times \frac{196.97 \text{ g Au}}{1 \text{ mol Au}} = 5.6 \text{ g Au}$$

$$\frac{\text{time}}{\text{(sec)}} \times \frac{\text{current}}{\text{(Amp)}} \times \frac{1}{2} \times \frac{\text{Solid metal}}{\text{mol e}} \times \frac{\text{molar mass (g/mol)}}{\text{mol e}}$$

You will need to be able to do two basic calculations for quantitative electrolysis:

- 1. Given time (sec) and current (A), calculate mass (g).
- 2. Given mass (g) and current (A), calculate time required (sec).

Of course, there are endless variaties of these two calculation types we can give you! 😉

Quick Trick to remember the order of steps to calculate mass of a metal produced (given time and current):

Let's Try!

1. If 3.30 faraday of charge is passed through a solution of Al₂(SO₄)₃, what mass of aluminum is deposited?

2. How long must a current of 5.00 A be applied to a solution of AgCN to produce 10.5 g silver metal?

- 3. Copper may be used for electroplating, starting with a solution of $Cu(NO_3)_2(aq)$.
 - a. If a current of 10.0 amp is applied to the $Cu(NO_3)_2(aq)$ solution for 60.0 minutes, what mass of copper will be plated out? (Assume excess $Cu(NO_3)_2(aq)$).

b. How many moles of electrons must be transferred in this reaction to produce 5.16 g of copper metal?