Electrochem Equilibrium

→ Surprise! The exchange of _____ in a redox reaction is reversible, and therefore relevant to equilibrium.

At Equilibrium:

- Forward and backward reactions continue at the <u>Same</u> rate.
- There is NO NET movement between reactants and products, which means there is NO measurable voltage in an electrochemical cell at equilibrium!
- Voltaic/Galvanic cell at equilibrium = <u>dead</u> battery

The Equilibrium Constant, K: ratio of products to reactants at equilibrium (at given temperature).

If you have the following equilibrium reaction,

$$K = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} = \frac{[Products]^{coefficient}}{[Reactants]^{coefficient}}$$

Since pure solids and liquids are not included in the K expression, only 99000 (or rarely, gaseous) reactants and products are included in the equilibrium constant expression, K, for electrochemical cells.

The Reaction Quotient, Q

In a standard galvanic/voltaic cell:

- K >> 1 and Q = 1 (since [reactants] = [products] = 1.0 M
- Thus, K > Q and the reaction spontaneously makes products
 - o Since this is a redox reaction, as products are made, electrons are transferred = current flows!
- Once the reaction has run long enough that K = Q, equilibrium is reached and no current flows (i.e. dead battery)

Voltaic Cell, Standard Conditions (1.0 M)

voltage **decreases** as system approaches equilibrium

Cell at Equilibrium

K = QNo Products Form = No Current
Dead Battery (0 V)

K >> Q

Products Form/Current Flows

 $\#V = E^{o}_{cell}$

Gibb's Free Energy (ΔG)

 ΔG = change in free energy = ability to do W or K.

→ Next unit, we will talk more about the meaning of "free energy", but for this unit you need to be able to use the numerical value of ΔG to predict the spontaneity of a reaction.

Exergonic Reaction (-∆G)	Endergonic Reaction (+ΔG)
Spontaneous (Thermodynamically Favorable)	Not Spontaneous (Thermodynamically Unfavorable)
$+E^{o}_{cell} = voltage created (battery)$	$-E^{o}_{cell}$ = external power source needed
Free energy	Free energy

The relationship between Gibb's free energy and cell potential can be quantified through the following equation:

$$\Delta G^o = -nFE^o_{cell}$$

$$\Delta G^o = -nFE^o_{cell}$$
 } on formula chart!

The variables are:

n = number of moles of electrons transferred in a BALANCED redox reaction

F = faraday's constant = 96,485 C/ mol e⁻ (charge on one mole of electrons)

Remember: E° is measured in volts, and 1 V = 1 J/C $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

ΔG is usually measured in kJ/mol or J/mol Mastering Chem only uses units of kJ or J Masking Chem.

Let's Practice!

1. Identify n (the number of moles of electrons transferred) in each of the following reactions (hint: think about the half-reactions).

a.
$$2 \text{ Ce(s)} + 3 \text{ Ni}^{2+}(\text{aq}) \rightleftharpoons 2 \text{ Ce}^{3+}(\text{aq}) + 3 \text{ Ni(s)}$$

b.
$$Sn(s) + 2 Ag^{+}(aq) \rightleftharpoons Sn^{2+}(aq) + 2 Ag(s)$$

2. Calculate ΔG° (in kJ/mol) for this reaction: Fe(s) + Cu²⁺(aq) \rightleftharpoons Fe²⁺(aq) + Cu(s), where E°_{cell} = 0.79 V. Is this reaction thermodynamically favorable? Explain.

$$\Delta G^{\circ} = -n^{\varphi} E_{cell}^{\circ} = -\left(2 \frac{201e^{-1}}{mol_{ren}}\right) \left(96.485 \frac{e}{201e^{-1}}\right) \left(0.79 \frac{\sqrt{3}}{e}\right) = -\frac{25.4}{152,466}$$

= -150,000
$$\frac{J}{mol_{rxn}} \times \frac{IkJ}{1000 J} = \left[-150 \frac{kJ}{mol_{rxn}} \right] \left[-\Delta G = \right] \text{ yes,}$$

thermodynamically favorable!

$$\Delta G^o = -RT \ln K$$
 } on formula chart!

The variables are:

 $R = universal gas constant = 8.314 J mol^{-1} K^{-1}$

T = temperature (in Kelvin)

K = equilibrium constant

This equation can be rewritten to give:

• The units for $\Delta G^o = \frac{\text{joules}}{\text{moles}_{\text{reaction}}} = \frac{J}{\text{mol}_{\text{rxn}}}$

but Mastering Chem uses J

Summary

E^o_{cell}	ΔG^o	K	Thermodynamically favorable?
+	_	K > 1	Favorable
_	+	K < 1	Not favorable
= 0	= 0	2 K/411 K	n/a

Let's Practice!

1. The standard cell potential, E^ocell, is +0.67 V for the balanced oxidation-reduction reaction shown below:

$$S_4 O_6{}^{2-}(aq) + 2 \; Cr^{2+}(aq) \rightarrow 2 \; Cr^{3+}(aq) + 2 \; S_2 O_3{}^{2-} \; (aq)$$

a. Calculate the free energy change for the cell (in kJ/mol_xxn).
$$\Delta G^{\circ} = -h + E^{\circ}_{cell} = -\left(2 \frac{mol e^{-}}{mol xxn}\right) \left(96,485 \frac{C}{mol e^{-}}\right) \left(0.67 \frac{T}{c}\right) = -130,000 \frac{T}{mol xxn} \times \frac{1 k T}{1000 T} \times \frac{1 k T}{1000 T}$$

b. Calculate the equilibrium constant for this reaction (at 25°C).

$$\Delta G^{\circ} = -RTLhK \Rightarrow lnK = \frac{-\Delta G^{\circ}}{RT} = \frac{+130,000 J/molnen}{(8.314 \frac{J}{mol\cdot K})(298 K)} = 52.47$$

$$K = e^{52.47} = 6.1 \times 10^{22}$$

$$K >> 1, VERY favorable! 0$$