Let's Practice!

- 3. A voltaic cell is constructed based on the following reaction:
- $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

a. A student accidentally adds additional $ZnSO_4$ to the $Zn(s)/Zn^{2+}(aq)$ half-cell. What happens to the magnitude of the cell voltage (relative to the standard cell)? Justify your answer.

Adding ZnSO4 would increase [Zn2+], a product, increasing Q + bringing the rxn closer to equilibrium. Thus, the magnitude of the cell voltage decreases: Ecell < Ecell .

b. Is the value of the equilibrium constant for the cell reaction greater than 1, less than 1, or equal to 1? Explain.

his is a voltaic cell, which means it is thermodynamically favorable, so K > 1.

c. What must be true about the standard free energy change of this reaction, ΔG°? Justify.

The rxn is thermodynamically favorable, this ΔG is negative. (or: KLI and $\Delta G^\circ = -RTL_nK$, so $-\Delta G^\circ$) $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

- 4. A galvanic cell based on the reaction represented above was constructed from zinc and copper half-cells. The observed voltage was found to be 1.22 volt instead of the standard cell potential, E^o , of 1.10 volts. Which of the following could correctly account for this observation?
 - A. The cell had been running for a period of time.
 - B. The standard free energy of the cell, $\Delta G^{\circ},$ is negative.
 - C. The Cu^{2+} solution was less concentrated than the Zn^{2+} solution.
 - (D.) The Zn²⁺ solution was less concentrated than the Cu²⁺ solution.
- Ecell > E'cell
- 5. Which of the following statements is true about the reaction below?

2 Ag(s) + Cu²⁺(aq)
$$\rightleftharpoons$$
 2 Ag⁺(aq) + Cu(s) $K_{eq} = 2.7 \times 10^{-16}$ \int K \swarrow 1

a. E° and ΔG° are both positive.

- c. E° is positive and ΔG° is negative.
- b. E^{o} and ΔG^{o} are both negative.
- (d.) E° is negative and ΔG° is positive.

6. In the reaction below, a piece of solid nickel is added to a solution of potassium dichromate.

How many moles of electrons are transferred when 1 mole of potassium dichromate is mixed with 3 mol of nickel?

- a. 2 moles of electrons
- c. 5 moles of electrons
- b. 3 moles of electrons
- (d.) 6 moles of electrons
- 7. Calculate the standard free energy of the following reaction at 25°C. (in T/holas)

$$Fe^{2+}(aq) + Mg(s) \rightarrow Fe(s) + Mg^{2+}(aq)$$

a. 3.7×10^5

b. 1.6×10^3

$$-1.6 \times 10^3$$

$$\Delta G^{\circ} = -nF E^{\circ}_{cell} = \left(-2 \frac{mol e^{-}}{mol_{Ny}}\right) (96,485 \frac{c}{mol e^{-}}) (1.92 \sqrt{c}) = -2 \times 100,000 \times 2$$

$$= -4 E 5 \sqrt{mol_{Ny}}$$

$$Fe(s) + Cu^{2+}(ag) \rightarrow Fe^{2+}(ag) + Cu(s)$$

- 8. An electrolytic cell based on the reaction represented above was constructed from iron and copper half-cells. The observed voltage was found to be 0.59 volt instead of the standard cell potential, E°, of 0.78 volts. Which of the following could correctly account for this observation?
 - 0.59 V 4 0.78 V
 - A. The copper electrode was larger than the iron electrode.
 - B. The solutions in the half-cells had different volumes.
 - C. The Cu^{2+} solution was more concentrated than the Fe^{2+} solution.
 - (D.) The Fe²⁺ solution was more concentrated than the Cu²⁺ solution.

$$2 \text{ Al(s)} + 3 \text{ Mn}^{2+}(\text{aq}) \rightarrow 2 \text{ Al}^{3+}(\text{aq}) + 3 \text{ Mn(s)}$$

- 9. A thermodynamically favorable cell, utilizing the reaction shown above, ran for 45 minutes. What happens to the measured voltage and why?
 - (A.) The measured voltage decreases over time because deviations in concentration that bring the cell closer to equilibrium will decrease the magnitude of the cell potential.
 - B. The measured voltage increases over time because deviations in concentration that bring the cell closer to equilibrium will increase the magnitude of the cell potential.
 - C. The measured voltage increases over time because [Mn²⁺] increases as the cell runs.
 - D. The measured voltage remains constant because E^{o}_{cell} is an intensive property.