8. Given a 2.00 L saturated solution of $Cu(IO_3)_2$, $K_{sp} = 1.4 \times 10^{-7}$, how many moles of $NalO_3$ would need to be dissolved in solution to reduce $[Cu^{2+}]$ to 6.0×10^{-5} M? (Assume the added $NalO_3$ does not appreciably change the total volume of solution.)

$$K_{Sp} = \mathbb{E} C_{h}^{2+} \mathbb{I} \mathbb{E} \mathbb{I} O_{3}^{-} \mathbb{J}^{2} = (6.0 \text{ E} - 5) \mathbb{E} \mathbb{I} O_{3}^{-} \mathbb{J}^{2} = 1.4 \text{ E} - 7$$

$$\mathbb{E} \mathbb{I} O_{3}^{-} \mathbb{J} = \sqrt{\frac{1.4 \text{ E} - 7}{6.0 \text{ E} - 5}} = 0.048 \text{ M} \mathbb{I} O_{3}^{-} \times 2.00 \text{ L} = 0.097 \text{ mol } \mathbb{I} O_{3}^{-}$$

$$0.097 \text{ mol } \mathbb{I} O_{3}^{-} \times \frac{1 \text{ mol } N_{4} \mathbb{I} O_{3}}{1 \text{ mol } \mathbb{I} O_{3}^{-}} = 0.097 \text{ mol } N_{4} \mathbb{I} O_{3}$$

Even more practice!

9. Copper(I) bromide has a measured solubility of 2.0×10^{-4} mol/L at 25°C. Calculate its K_{sp} value.

10. The K_{sp} value for copper(II) iodate, Cu(I $Q_{3/2}$) is 1.4×10^{-7} at 25°C. What is the maximum mass, in grams, of copper (II) iodate that can dissolve in 500. mL of water?

$$K_{Sp} = [Cu^{2+}][IO_3^{-}]^2 = \times (2\times)^2 = 4\times^3 = 1.4E-7$$

$$X = \sqrt[3]{\frac{1.4E-7}{4}} = 3.271E-3M\times0.500L = 1.636E-3 mol Cu(IO_3)_2 \times \frac{413.379}{1mol}$$

$$= [0.68g Cu(IO_3)_2]$$

11. In pure water at 25°C, the molar solubility of PbCl₂ is 1.3 x 10^{-6} and the K_{sp} is 1.6 x 10^{-5} . LiCl is added to 5.00 L of a saturated solution of PbCl₂ at 25°C until the [Pb²⁺] is reduced to 4.5 x 10^{-4} M. How many moles of chloride ions are dissolved in solution at the point when [Pb²⁺] = 4.5 x 10^{-4} M? (Assume the added Ca(NO₃)₂ has a negligible effect on the total volume of solution.)

$$K_{Sp} = [Pb^{2+}][CI-J^{2} = (4.5E-4)[CI-J^{2} = 1.6E-5]$$

 $[CI-J] = \sqrt{\frac{1.6E-5}{4.5E-4}} = 0.19 \text{ M CI} \times 5.00 \text{ L} = 0.94 \text{ mol CI}$

Multiple Choice Practice!

Use the following information to answer questions 12-14.

150 mL of saturated SrF₂ solution is present in a 250 mL beaker at room temperature. The molar solubility of SrF₂ at 298 K is 1.0×10^{-3} M. Sr F₂ \rightleftharpoons Sr $^{2+}$ \dotplus 2 F $^{-}$

12. What are the concentrations of Sr²⁺ and F⁻ in the beaker?

a.
$$[Sr^{2+}] = 1.0 \times 10^{-3} \text{ M}; [F^-] = 1.0 \times 10^{-3} \text{ M}$$

(b.)
$$[Sr^{2+}] = 1.0 \times 10^{-3} \text{ M}; [F^-] = 2.0 \times 10^{-3} \text{ M}$$

c.
$$[Sr^{2+}] = 2.0 \times 10^{-3} \text{ M}; [F^-] = 1.0 \times 10^{-3} \text{ M}$$

d.
$$[Sr^{2+}] = 2.0 \times 10^{-3} \text{ M}; [F^-] = 2.0 \times 10^{-3} \text{ M}$$

$$ES_r^{2+} = X = 1E-3$$

+x +2x

- 13. What would be the effect on [Sr²⁺] if some NaF(s) was added to the beaker?
 - a. [Sr²⁺] would remain unchanged; neither ion in NaF(s) is common to Sr²⁺
 - b. [Sr²⁺] would increase; more Sr²⁺ ions would be needed to balance the additional F⁻ ions to re-establish equilibrium.
 - (c.) [Sr²⁺] would decrease; the additional fluoride ions would cause the system to shift left to re-establish equilibrium.
 - d. [Sr²⁺] would decrease; the additional Na⁺ would cause an excess of positive charge, and the system would shift left to reduce overall positive charge.

14. Calculate the solubility product for SrF₂ at 25°C.

(c.)
$$4 \times 10^{-9}$$

b.
$$2 \times 10^{-6}$$

$$K_{sp} = ESr^{2+}JEF-J^{2}$$

$$= \times (2x)^{2} = 4x^{3}$$

$$= 4(1E-3)^{3}$$

$$= 4E-9$$