Combustion Analysis

Combustion Analysis: Technique used to obtain the empirical formula of a hydrocarbon

Remember a standard (unbalanced) combustion reaction? (This formula is unbalanced!)

$$C_xH_yO_z + O_2 \rightarrow CO_2 + H_2O$$

How to Solve a Combustion Analysis Problem

- 1. Convert mass of CO_2 and mass of H_2O to moles of each compound.
- 2. Convert moles of CO2 to moles of Carbon, and moles of H2O to moles of hydrogen.
- 3. If the compound contains something which is __not___ C or H, find its mass by subtraction, and convert the mass to moles.
- 4. Now you have mole numbers! Complete the <u>empicical</u> formula calculation (divide by small, multiply til whole).

Practice:

1. Upon combustion, a 0.8233 g sample of a compound containing only carbon, hydrogen, and oxygen produces 2.445 g CO_2 and $0.6003 \text{ g H}_2\text{O}$. What is the empirical formula of the compound?

$$CO_{2} \rightarrow C: 2.445gCO_{2} \times \frac{1 \text{ mol } CO_{2}}{44.01 \text{ g } CO_{2}} \times \frac{1 \text{ mol } C}{1 \text{ mol } CO_{2}} \times \frac{12.01 \text{ g } C}{1 \text{ mol}} = 0.6672 \text{ g } C$$

$$H_{2}O \rightarrow H: 0.6003 \text{ g } H_{2}O \times \frac{1 \text{ mol } H_{2}O}{18.016 \text{ g } H_{2}O} \times \frac{2 \text{ mol } H}{1 \text{ mol } H_{2}O} \times \frac{1.008 \text{ g } H}{1 \text{ mol } H_{2}O} = 0.06717 \text{ g } H$$

C:
$$0.6672 g/12.01 f/m_{01} = 0.055555 mol C$$
 = 10
H: $0.06717 g/1.008 f/m_{01} = 0.06664 mol H$: $0.00556 = 12$
O: $0.0889 g/16.00 f/m_{01} = 0.00556 mol O$ = 1

Practice Makes Perfect!

a. CH₂

2. Combustion analysis determined that a compound containing only carbon and hydrogen produces 1.83 g CO_2 and 0.901 g H_2O . Find the empirical formula of the compound.

C: 1.83 g
$$CO_2 \times \frac{1 \text{ mol } CO_2}{44.01 \text{ g } CO_2} \times \frac{1 \text{ mol } C}{1 \text{ mol } CO_2} = 0.0416$$

H: 0.901 g $H_2O_1 \times \frac{1 \text{ mol } H_2O}{18.016 \text{ g } H_2O} \times \frac{2 \text{ mol } H}{1 \text{ mol } H_2O} = 0.100$
 $= 2.4$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 2$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $=$

3. When the <u>unbalanced</u> reaction below occurs at STP, 1.5 L of CO₂ and 1.0 L of H₂O are created. What is the empirical formula of the hydrocarbon?

$$C_{x}H_{y}(g) + O_{z} \rightarrow CO_{z}(g) + H_{z}O(g)$$
a. CH_{z}
b. $C_{z}H_{3}$
c. $C_{z}H_{5}$
d. $C_{3}H_{4}$

$$C: 1.5 L \times \frac{1 \text{ mol } CO_{z}}{22.4 L} \times \frac{1 C}{1 CO_{z}} = \frac{1.5}{22.4} \text{ mol } C$$

$$= 1$$

$$\frac{1.5}{22.4 L} \times \frac{1 \text{ mol } H_{z}O}{1 CO_{z}} \times \frac{2 H}{1 H_{z}O} = \frac{2}{22.4} \text{ mol } H$$

$$= \frac{2}{22.4} \times \frac{22.4}{1.5} = \frac{2}{1.5} = \frac{4}{3}$$

$$= 4$$

4. Combustion analysis of 0.800 g of an unknown hydrocarbon yields 26 g CO_2 and 7.8 g H_2O . What is the formula of the hydrocarbon?

d. C₃H₄

c. C₂H₅

C:
$$\frac{216g}{216g} \frac{CO_2}{X} \times \frac{1 \text{ mol}}{4 \text{ Hg}} \times \frac{1 \text{ C}}{1 \text{ CO}_2} = \frac{13}{22} \approx 0.6$$
 = 1 = 2
H: $7.8g$ HzO₂ $\frac{1 \text{ mol}}{18g} \times \frac{2 \text{ H}}{1 \text{ Hz}} \approx \frac{16}{18} \approx 0.9$ = 1.5 = 3