Use the following information to answer questions 2-5.

A multi-step reaction takes place with the following elementary steps:

Step 1:

 $A + B \leftrightarrow C$

Step II:

 $C + A \rightarrow D$

Step III:

 $C+D \rightarrow B+E$

- 2. What is the overall balanced equation for this reaction?
 - a. $2A + B + 2C + D \rightarrow C + D + B + E$

c. $A + 2C \rightarrow D + E$

b. $A + B \rightarrow D + E$

(d.) 2A+C \rightarrow E

- 3. What is the function of species B in this reaction?
 - a. Without it, no reaction would take place.
 - b. It is a reaction intermediate which facilitates the progress of the reaction.
 - (c.) It is a catalyst which lowers the activation energy of the reaction.
 - d. It increases the temperature, thus increasing the rate of the reaction.
- 4. If step II is the slow step for the reaction, what is the overall rate law?
 - (a.) rate = $k[A]^2[B]$

c. rate = k[A][B]

b. rate = k[A][C]

d. rate = k[A]/[D]

- 5. Why would increasing the temperature make the reaction rate go up?
 - a. It is an endothermic reaction that needs an outside energy source to function.
 - (b.) The various molecules in the reactions will move faster and collide more often.
 - c. The overall activation energy of the reaction will be lowered.
 - d. A higher fraction of molecules will have the same activation energy.

Step 1:

 $O_3 + NO_2 \rightarrow NO_3 + O_2$ slow

Step 2:

 $NO_3 + NO_2 \rightarrow N_2O_5$ fast

- 6. A proposed reaction mechanism for the reaction of nitrogen dioxide and ozone is detailed above. Which of the following is the rate law for the reaction?
 - (a.) rate = $k[NO_2][O_3]$

c. rate = $k[NO_2]^2[O_3]$

b. rate = $k[NO_3][NO_2]$

d. rate = $k[NO_3][O_2]$