Quiz Free Response Practice (2009B, #1, 11 points)

A pure 14.85 g sample of the weak base ethylamine, $C_2H_5NH_2$, is dissolved in enough distilled water to make 500. mL of solution.

(a) Calculate the molar concentration of the C₂H₅NH₂ in the solution. (2 points)

(b) Write an equation showing how the aqueous ethylamine reacts with water. (1 point)

(c) Write the equilibrium-constant expression for the reaction between C2H5NH2(aq) and water. (1 point)

$$K_b = \frac{[C_2H_5NH_3^{\dagger}][OH-]}{[C_2H_5NH_2]}$$

(d) Of C₂H₅NH₂(aq) and C₂H₅NH₃⁺ (aq), which is present in the solution at the higher concentration at equilibrium? Justify your answer. (1 point)

- (e) A different solution is made by mixing 500. mL of 0.500 M C₂H₅NH₂ with 500. mL of 0.200 M HCl. Assume that volumes are additive. The pH of the resulting solution is found to be 10.93.
 - a. Calculate the concentration of OH-(aq) in the solution. (1 point)

$$pOH = 14 - pH = 14 - 10.93 = 3.07$$

 $EOH - 7 = 10^{poH} = 10^{-3.07} = 8.5 \times 10^{-4} M$

b. Write the net-ionic equation that represents the reaction that occurs when the C2H5NH2 solution is

mixed with the HCI solution. (1 point) $C_2H_5NH_2(aq) + HCI(aq) \rightarrow C_2H_5NH_3(aq) + H_2O(e)$ $C_2H_5NH_2(aq) + H^+(aq) \rightarrow C_2H_5NH_3^+(aq)$ weak base strong acid $C_2H_5NH_2(aq) + H_2O(e)$ $C_2H_5NH_2(aq) + H_2O(e)$

c. Calculate the molar concentration of the C₂H₅NH₃⁺ (aq) that is formed in the reaction. (2 points)

not needed (yet!)
this will be more applicable
in Unit 8 (oops!)

d. Calculate the value of K_b for C₂H₅NH₂ (2 points)