Unit 5 MC Practice

Use the following information to answer questions 1-3.

The following experimental data was collected for the hypothetical decomposition reaction A \rightarrow B + C.

Experiment	[A] (M)	T (K)	t _{1/2} (min)
1	0.200	298	0.270
2	0.400	298	0.270
` 3	0.200	273	0.350
. 4	0.400	273	0.350

- 1. Based on the information above, what is the order of the reaction?
 - a. The reaction is first order, because the stoichiometric coefficient of the reactant is 1.
 - b.) The reaction is first order, because half-life is independent of reactant concentration.
 - c. The reaction is zero order, because changing the reactant concentration did not affect the half-life.
 - d. The reaction is zero order, because decreasing the temperature of the reaction decreased the half-life.
- 2. For which experiment is the intial rate of the reaction highest?
 - a. Experiment 1, because fewer reactant molecules will need to be converted into product.
 - b.) Experiment 2, because both the temperature and reactant concentration are maximized.
 - Experiment 3, because a lower temperature will decompose A most efficiently.
 - d. Experiment 4, because a lower temperature and higher (reactant) maximizes reaction rate.
- 3. Calculate the rate constant, k, for this reaction at 298 K.

a.
$$2.86 \,\text{min}^{-1}$$
 b. $2.86 \,\text{min}^{-1} M^{-1}$ c. $1.98 \,\text{min}^{-1}$
 $t_{y_2} = \frac{0.693}{K} \Rightarrow K = \frac{0.693}{t_{y_2}} = \frac{0.693}{0.350 \,\text{min}} \approx 2 \,\text{min}^{-1}$

$$2H_2O_2 \rightarrow 2H_2O_3 + O_2$$

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

4. The decomposition of hydrogen peroxide is shown above and has the following proposed mechanism:

$$H_2O_2 + I^- \rightarrow H_2O + IO^-$$

 $H_2O_2 + IO^- \rightarrow H_2O + O_2 + I^-$

Which of the following substances serves as a catalyst for this reaction?

5. For the reaction whose rate law is given below, a plot of which of the following is a straight line?

rate =
$$k[X]$$
 $\Rightarrow 1S+$ order

- a. [X] vs time
- b. 1/[X] vs time
- c. ln[X] vs 1/time (d.) ln[X] vs time

 $rate = k[A][B]^2$ 6. $A + B \rightarrow C + D$

What are the potential units for the rate constant for the above reaction?

b.
$$s^{-1} M^{-1}$$

(c.)
$$s^{-1}M^{-2}$$

d.
$$s^{-1} M^{-3}$$

Use the following information to answer questions 7-8.

Reactant A underwent a decomposition reaction: A \rightarrow 2B + C. The concentration of A was measured periodically and recorded in the chart below.

Time (Hours)	[A] <i>M</i>
0	0.40
1	0.20
2	0.10
3	0.05

7. Based on the data in the chart, which of the following is the rate law for the reaction?

(a) rate =
$$k[A]$$
 b. rate = $k[A]^2$

Constant $\frac{1}{2}$ life!

8. What would be the concentration of B after two hours?

Use the following information to answer questions 9-10.

$$2\mathrm{NO}(g) + \mathrm{Br}_2(g) \leftrightarrow 2\mathrm{NOBr}(g)$$

The above experiment was performed several times, and the following data was gathered:

Tr	ial	[NO]	$[\mathrm{Br}_2]_{\mathrm{init}}$	Initial Rate of	
		(M)	(M)	Reaction	
				(M/min)	
	Ì	− 0.20 M	0.10 M	$5.20 \times 10^{-3} = 5E-3$ $1.04 \times 10^{-2} = 10E-3$ 2×10^{-3}	
4	22X	0.20 M	0.20 MV	1.04 × 10-2 = 10 = -3 2 2 × 4	X
9	3	-> 0.40 M	0.10 M	2.08 × 10-2 = 20 E-3	, -

c. rate = 2k[A] d. rate = $\frac{1}{2}k[A]$

9. What is the rate law for this reaction?

a. rate =
$$k[NO][Br_2]^2$$

b. rate =
$$k[NO]^2[Br_2]^2$$
 c. rate = $k[NO][Br_2]$

c. rate =
$$k[NO][Br_2]$$

(d.) rate =
$$k[NO]^2[Br_2]$$

10. What would be the initial rate of the reaction if $[NO]_{init} = 0.40 \text{ M}$ and $[Br_2]_{init} = 0.20 \text{ M}$? $2 \times expt. 3$

a.
$$2.08 \times 10^{-2} \text{ M/min}$$

(b)
$$4.16 \times 10^{-2}$$
 M/min c. 6.24×10^{-2} M/min d. 8.32×10^{-2} M/min

11. A proposed mechanism for a reaction is as follows:

$$NO_2 + F_2 \rightarrow NO_2F + F$$
 slow step $rate = K[NO_2][F_2]$
 $F + NO_2 \rightarrow NO_2F$ fast step

What is the order of the overall reaction?

d. third order

$$37/42$$

 $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

12. The following data was collected at 25°C and 1 atm of pressure for the reaction shown above.

1.24		
1.27	 ĸ	62
7	G.	4,5 4

Time (minutes)	$[N_2O_5]$ (mol/L)	
0	1.24 × 10 ⁻²	
10.	0.92×10^{-2}] 1 ~ 509,
20.	0.68×10^{-2}	
30.	0.50 × 10 ⁻²	
40.	0.37×10^{-2}	
50.	0.28×10^{-2}	
70.	0.15×10^{-2}	

Which of the following best represents the half-life for this reaction?

- a. 15 min
- b. 18 min
- 23 min
- 36 min

Use the following information to answer questions 13-14.

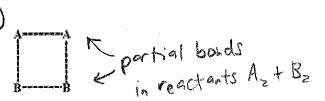
$$2A_2 + B_2 \rightarrow 2C$$

$$A_2 + B_2 \rightarrow R + C$$
(slow)
 $A_2 + R \rightarrow C$

$$A_2 + R \rightarrow C$$

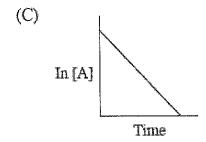
13. The activated complex that forms in Step I of the mechanism shown above could have which of the following structures? (The dotted lines represent partial bonds.)

A

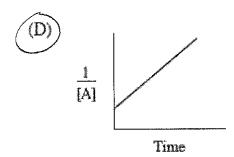


C

В


14. Which of the following rate law expressions best agrees with the proposed mechanism?

- a. rate = $k[A_2]$
- b. $rate = k[A_2]^2$ c. $rate = k[A_2][R]$
- $rate = k[A_2][B_2]$


15. Which of the following graphs may have been created using data gathered from the above reaction?

(A) [A]

Time

(B) [A] Time

$$2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$$

$$H-O-O-H (\times 8)$$

$$+ \bigvee_{1 \le l \le l} H-O-O-H (\times 4)$$

$$+ \bigcup_{2 \le l \le l} H-O-H (\times 4)$$

$$+ O-O-H (\times 6)$$

$$+ O-O-H (\times 6$$

- 16. The above diagrams show the decomposition of hydrogen peroxide in a sealed container in the presence of a catalyst. What is the overall order for the reaction?
 - a. zero order
- (b.) first order
- c. second order
- d. third order

constant ty!