AP Chem Unit 4 FRO Practice [4 points: 8 minutes]

limiting!

 $HBr(aq) + KOH(aq) \rightarrow H_2O(I) + KBr(aq)$

A student mixes 45 mL of 1.2 M HBr and 65 mL of 1.2 M KOH in a coffee-cup calorimeter and observes the temperature change as they react according to the balanced equation above until the mixture reaches thermal equilibrium. Each solution has a density of 1.00 g/mL and a specific heat of 4.18 J/g°C.

sig fig pt!

(a) The initial and final temperatures (°C) of the mixture are shown in the laboratory setup above. Based on the data shown, what is the change in temperature reported? [1 POINT]

(b) Calculate the molar enthalpy of this reaction, ΔH_{rxn} , in kJ/mol. [2 POINTS]

$$q_{rx\eta} = -q_{cal} = -(45 + 65)(4.18)(5.5 °C) = -2,528.9 \text{ J} \times \frac{1 \text{ kJ}}{1000 \text{ J}} = -2.5289 \text{ kJ}$$

mol HBr = 1.2 M x 0.045 L

limiting
reactant = 0.054 mol HBr
$$\frac{1 \text{ mol rxn}}{1 \text{ mol HBr}} = 0.054 \text{ mol rxn}$$

$$= \frac{2.5289 \text{ kJ}}{0.054 \text{ mol rxn}} = -47 \frac{\text{kJ}}{\text{mol}}$$

(c) After the experiment, the student discovered that the thermometer used was broken: all temperature readings were 1.2°C lower than the actual temperature. Would this lab error cause the calculated enthalpy of this reaction, ΔH_{xx} , to increase, decrease, or remain the same? Explain. [1 POINT]

Remain the Same! Nemain the same:

If Ti and To were 1.2°C less, $\Delta T = Same! \left(26.8 - 21.3 = 5.5°C + Same as\right)$

=) no calculation results would be affected by this lab error.