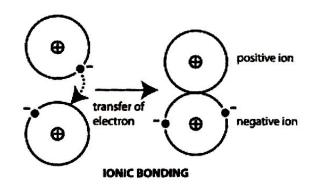
Bonding Day 1: Can you hold it together??

Bonding: The attractive forces that hold groups of atoms together are called chemical b and s


- → Bonds tend to form so that each atom, by gaining, losing, or sharing electrons has eight electrons in its valence level (this is called the Octet rule).
- → The goal of bonding is to achieve the lowest possible energy state.

	Types of Bonds		
lonic	Covalent	Metallic	
metal + non-metal	non-metal + hon-metal	metal û	

<u>Ionic Bonding</u>: Metal + Nonmetal(s) (atoms with very <u>different</u> electronegativities)

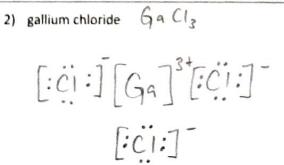
- Electrons are <u>transferred</u> from the <u>metal</u> to the <u>non-metal</u>.

 Electrical attraction between a <u>Cation (+)</u> (metal) and an <u>anion (-)</u> (nonmetal).
- Ionic compounds form a solid, regular array of cations and anions called a Crystal lattice.
- Lattice energy: how much energy it takes to break apart a solid ionic compound.

Ionic Bond Properties

- High melting points and boiling points.
- hard and brittle

mobile charges!


conduct electricity when liquid or aqueous (dissolved in water) but not when solid

Lewis Dot Structures of Binary Ionic Compounds

Metal ions are always __naked____!

Non-metal ions are always Stuffed

1) magnesium fluoride Mg Fz [:F:] [Mg]2+[:F:]-

Key Formulas and Relationships

When answering questions about ionic bond strength, justify your response using Coulomb's Law:

$$Lattice\ Energy = k(\frac{Q_1Q_2}{d})$$

Use Coulomb's Law to justify melting point, solubility, and lattice energy differences between two ionic compounds.

→ The more highly <u>charged</u> the ions OR the <u>Smaller</u> the ions, the **GREATER** the attraction!

Lattice energy: energy released when the solid crystal forms from separate ions in the gas phase

- Directly dependent on size of charges
- Inversely dependent on distance between ions
- Ion charge is generally MORE important than ion size

Greater lattice energy = _____ energy required to separate ions

- > Stronger ionic bond
- → ↑ melting point
- → <u>V</u> solubility (ions must separate/dissociate from one another and attach to water to dissolve)

241 pm
Na ⁺ Cl ⁻ 276 pm
K CI 314 pm
Cs ⁺ Cl ⁻

Metal Chloride	Lattice Energy kJ/mol	
LiCl	-834	
NaCl	-788	
KCI	-701	
CsCl	-657	

Let's Practice!

- 1. Arrange the following ionic compounds NaF, MgF2, MgO, KF
 - a. in order of increasing lattice energy: $KF < NqF < MgF_2 < MgO$
 - b. in order of increasing melting point:
 - c. in order of increasing solubility: $MgO < MgF_z < NaF < KF$
- 2. Would the lattice energy of lithium fluoride be larger or smaller than the lattice energy of potassium bromide.

The lattice energy of LiF is > that of KBr, blc both Lit and F- are Smaller than K+ and Br (respectively). According to Conlomb's law, decreasing the distance between charged particles increases their energy of attraction.

Percent Ionic Character:

- The greater the difference in electronegativity between two bonded atoms, the greater the ionic character of the bond.
- The more Similar in electronegativity, the greater the covalent character of the bond.

Dipole moment: a measure of bond polarity; dipole moment means ionic character!

Represented by an arrow pointing in the direction of greater electron density

TABLE 9.2 Dipole Moments of Several

Molecule	ΔEN	Dipole Moment (D)
Cl ₂	0	0
CIF	1.0	0.88
HF	1.9	1.82
LiF	3.0	6.33

Let's Practice! Given the dipole moments listed in the table above, arrange the four molecules:

- a. in order of increasing ionic character: $Cl_2 < CIF < HF < LiF$
- b. in order of increasing covalent character: L; F < HF < CIF < CI,

Multiple Choice Practice

- 1. A crystalline solid has a melting point of 502°C, and it conducts electricity in an aqueous solution, but not while solid. Which of the following is most likely to be the identity of the substance?
 - a. I₂(s)
- c. $C_{12}H_{22}O_{11}(s)$
- b.) LiCl(s)
- d. Ni(s)
- 2. Which of the pairs of ions listed below will form a salt with the greatest melting point?
 - a. K⁺ and Cl⁻
- (c.) Ca2+ and S2-] 1 charge, I size
- b. Rb^+ and Cl^- d. Sr^{2+} and S^{2-}
- 3. Which of the following substances has the greatest ionic character?
 - a. XeF₂
- c. AsP₃
- (b.) GaBr₂
- d. PCl₅