Sigma (σ) and Pi (π) Bonding

<u>Sigma bond</u>: covalent bond formed by orbitals overlapping end to end. The electron density is concentrated between the nuclei of the two atoms involved in a bond.

<u>Pi bond</u>: covalent bond formed by orbitals overlapping side by side. The electron density is concentrated above and below the nuclei of the two atoms involved in a bond.

Bond Type	Made of	Length / Strength	
single bond	__ sigma bond	longest/ weakest	
double bond	l_ sigma bond +l_ pi bond	medium length/ strength	
triple bond sigma bond + pi bonds		shortest/ strongest	

Let's Practice! Identify the number of sigma and pi bonds in each structure shown below:

Hybrid Orbitals: orbitals of equal energy created by blending two or more valence orbitals on the same atom

- The same type of atom can have <u>different</u> types of hybridization depending on the atoms it is
- Hybridization can be determined by counting regions of <u>electron</u> density: electron domains!

# of Electron Domains	# of Hybrid Orbitals	Electron Geometry	Hybridization	
2	2	Linear	sp	
3	3	Trigonal planar	sp ²	
4	4	Tetrahedral	sp³	
5	5	Trigonal bipyramidal	sp³d	TINO
6	6	Octahedral	sp³d²	T AP

sted!

Example: Carbon in CH₄

Let's Practice! Identify the hybridization of the valence orbitals around the central atom in each molecule below.

