

4. Ethene,  $C_2H_4(g)$  (molar mass 28.1 g/mol), may be prepared by the dehydration of ethanol,  $C_2H_5OH(g)$  (molar mass 46.1 g/mol), using a solid catalyst. A setup for the lab synthesis is shown in the diagram above. The equation for the dehydration reaction is given below.

$$C_2H_5OH(g) \xrightarrow{\text{catalyst}} C_2H_4(g) + H_2O(g)$$
  $\Delta H_{298}^{\circ} = 45.5 \text{ kJ/mol}_{rxn}; \Delta S_{298}^{\circ} = 126 \text{ J/(K·mol}_{rxn})$  ethanol ethene water

A student added a 0.200 g sample of  $C_2H_5OH(I)$  to a test tube using the setup shown above. The student heated the test tube gently with a Bunsen burner until all of the  $C_2H_5OH(I)$  evaporated and gas generation stopped.

a. The Lewis electron-dot diagram for  $C_2H_4$  is shown below in the box on the left. In the box on the right, complete the Lewis electron-dot diagram for  $C_2H_5OH$  by drawing in all of the electron pairs. (1 point)

- b. What is the approximate value of the H-C-H bond angle in the ethene molecule? Explain. (1 point)
- c. During the dehydration experiment,  $C_2H_4(g)$  and unreacted  $C_2H_5OH(g)$  passed through the tube into the water. The  $C_2H_4$  was quantitatively collected as a gas, but the unreacted  $C_2H_5OH$  was not. Explain this observation in terms of the intermolecular forces between water and each of the two gases. (2 points)

