18

Formal Charge

Formal Charge: a way to identify the best Lewis dot structure when more than one valid dot structure exists

• Formal charges are hypothetical charges assigned to each <u>element</u> in the dot structure

Formal Charge = # of valence electrons - # non-bonding electrons (lone) - 1/2 # bonding electrons

You do NOT need to show work for formal charge calculations!!! ©

Formal Charge Rules (Which dot structure is best?)

- 1) Small (or even better, _____) formal charges are more stable.
- 2) ___ formal charge on the <u>more</u> electronegative atoms.
- 3) \pm formal charge on the $1e^{22}$ electronegative atoms.
- 4) Sum of all formal charges must $\frac{eqvq}{b}$ the charge of the molecule.

<u>Hint</u>: Formal charge = $\underline{\phi}$ when the atom forms the number of bonds you would predict based on its Lewis structure.

Formal Charge = 0												
H H-	B	c - c- - c= = c= etc	N -N= -N=	o - ; : ; =	F .: :F-							

Let's Practice!

The compound SO₂ can be drawn with multiple valid Lewis dot structures:

	:ö-s-ö:			ö=ï−ö:			:Ö—;=Ö		
# of valance e ⁻	6	6	6	6	6	6	6	6	6
– # of nonbonding e ⁻	- 6	-2	-6	-4	- 2	-6	-6	- 2	-4
$- \frac{1}{2}$ (# of bonding e ⁻)	-1	- 2	-1	-2	-3	-1	-1	-3	-2
Formal Charge	-1	+ 2	-1	φ	+1	-1	-1	+1	Ø

1. Which structure(s) best represents a molecule of SO₂? Justify your answer in terms of formal charge.

The last two structures both best represent a molecule of SO2: they have the smallest formal charges AND the -1 is found on the most EN atom, and the +1 is on the least EN atom.

Resonance Structures

Resonance structures: when $\pm \omega_O$ or more Lewis structures can validly represent a molecule (or ion)

- Each resonance structure <u>Contributes</u> to the real (observed) structure.
- The atoms of the molecule (or ion) stay in the <u>Same</u> relative position: only the distribution of electrons is different!
- The actual structure, the <u>resonance hybrid</u>, is <u>intermediate</u> between the two or more resonance structures.
 - All possible dot structures contribute to the real structure, BUT more stable ones (formal charge) contribute more.

Important Notes about Resonance Structures:

- Bonds are more equivalent to a "bond and a half" or a "bond and a third" in terms of length and strength, and are represented by one full line and one dashed line.
- Double edged arrows are used to indicate resonance.
- Resonance structures often occur in compounds with a double or triple bond.

Example: Nitrate (NO₃⁻)

Resonance Structures:

$$\begin{bmatrix} : \ddot{o}: \\ \vdots \ddot{o} - N = \ddot{o}: \end{bmatrix} \longleftrightarrow \begin{bmatrix} : o: \\ \vdots \ddot{o} - N - \ddot{o}: \end{bmatrix} \longleftrightarrow \begin{bmatrix} : \ddot{o}: \\ \vdots \ddot{o} = N - \ddot{o}: \end{bmatrix}$$

Resonance Hybrid (Real, Observed Structure):