Covalent Lewis Dot Structures

<u>Covalent Lewis Dot Structures</u>: formulas used to model what atoms look like in a compound that contains atoms that are covalently bonded together.

 \triangleright Non-metals will share electrons to get $\underline{\mathcal{B}}$ valence electrons and be stable.

Helpful Hints for Drawing Lewis Dot Structures

- 1. H is always a terminal atom \rightarrow ALWAYS connected to only 1 other atom.
- 2. <u>Lowest</u> electronegativity is central atom in molecule.
- 3. If drawing the Lewis structure for a polyatomic ion,
 - a. For positive ions, Subtract electron(s) from the central atom.
 - b. For negative ions, <u>add</u> electron(s) to the central atom.
 - c. Enclose the dot structure in square <u>brackets</u> and include the ion's charge outside the brackets.
- 4. Not all elements can form double or triple bonds: only C, N, O, P, and S! (Think CNOP-S)
- 5. For molecules with more than one central atom, use the formula to help you decide how to draw the structure.
- 6. The total number of valence electrons in your Lewis structure MUST equal the _____ of the valence electrons of all of the elements (add or substract electrons as needed for polyatomic ions).
- 7. For *most* covalent compounds, you can determine how many bonds each atom will form by looking at the number of unpaired electrons in their Lewis dot structure.
 - a. Paired electrons do <u>NoT</u> form bonds.
 - b. Single electrons do form bonds!

Н	Be ,	В ,.	C	N	0	F
Η.	Be.	Ŗ.	·C·	· N·	· Ö:	· F:
# bonds?l	# bonds? <u>2</u>	# bonds? <u>3</u>	# bonds? <u></u>	# bonds? <u>3</u>	# bonds?	# bonds?

Examples:

CH ₄	CO ₂	CH ₂ O
H - C - H H	C = C = 0	;O: H

15								
NH ₂ -	NH ₃		NH ₄ ⁺					
[:N-H]	H - N H	-H	H-N-H H-N-H					
OH-	H ₂ O : O - H		H ₃ O ⁺					
N ₂ H ₂			CH₂CH₂					
$H - \hat{N} = \hat{N} - H$		H $C = C$ H						
CH_3CHCH_2 $H \qquad H \qquad H$ $H - C - C = C$ H		H - C - C - H	CH₃CH₂COOH :O: - C - Ö - H					

But wait!!! Exceptions to the octet rule

1. Elements that will have $\frac{|eSS|}{|eSS|}$ than 8 valence electrons and are stable.

a. Hydrogen , 2 electrons (1 bond)

b. <u>Beryllium</u>, 4 electrons (2 bonds)

c. Boron 6 electrons (3 bond)

- 2. Elements that will have <u>more</u> than 8 valence electrons and are stable.
 - a. Elements in period (row) 3 through 7 can often expand their octet and can form more than 4 bonds (can have up to 12 electrons, 6 bonds)
 - 1. This is only possible between periods 3 through 7 because they can hold electrons in their empty <u>d Sublevel</u>.
 - 2. If you are unsure where to put extra lone pairs, check to see if the <u>central atom</u> can have an expanded octet (check to see if the element is in periods 3 through 7)

RnCl₂

:ci - Rn - ci:

8-2=6

BeH₂

H-Be-H

SF₆

产厂产

6-6-1

BF₃

if.
B
if:

XeCl₄

:ci: :ci — Xe — ci: :ci:

8-4=4

IF₇

FILE