In summary:

Types of Chemical Bonds						
Made of		One unit is called What holds them together?		Characteristic Properties		
Ionic	metal + non- metal(s)	formula unit	electrostatic attraction: between cation (+) and anion (-)	High melting and boiling points		
Covalent	non-metal + molecule		shared electrons	Low melting and boiling points (unless a network covalent solid such as diamond)		
Metallic	metals only	metal 🤨	electrostatic attraction: between "sea" of mobile or delocalized electrons and positive metal ions	Good conductors of heat and electricity (because of mobile electrons)		

Let's Practice!

1.	When pho	sphorus and	sulfur bond,	the re	eaction	involves a:
----	----------	-------------	--------------	--------	---------	-------------

a. creation of electrons

c. transfer of electrons from P to S

b. sharing of electrons

d. transfer of electrons from S to P

V	Vhich	bond	is the	strongest	?
---------------------	-------	------	--------	-----------	---

- a. C = C
- b. C-H
- c. C = N
- d.) N≡N

3. Which of the following substances is an electrolyte when dissolved in water?

- a. CH₃CH₂OH
- (c.) HBr (strong acid!)

b. SiF4

d. OF₂

4. When calcium and fluorine bond:

- a. two F atoms each give 7 electrons to Ca.
- c. two F atoms each give 1 electron to Ca.
- (b.) Ca loses 2 electrons, 1 to each fluorine.
- Ca shares electrons with F, forming 2 Ca F bonds.

5. Which of the following has the lowest ionic character?

- a. KCI
- b. (NH₂)₂CO₃
- (c.) SO2
- d. MgF₂

6. Which of the following is NOT a property of an ionic compound?

- a. hard
- (c.) melts readily at room temperature
- b. brittle
- d. conducts electricity when dissolved in water

7. Which of the following substances would be predicted to have the highest melting point?

c. P₂O₅

a. H₂S

8.	Wh	ich of the following is	NOT a	propert	y of a m	etallic compou	nd?		
	a.	malleable	c.	mobile	electror	ns easily condu	ct heat and electr	icity	
	b.	ductile	(d.)	held to	gether b	y electrostatio	attraction betwe	en cations an	d anions
9.	Wh	en iron and oxygen bo	nd, the	e reactio	on involv	es a:			
	a.	creation of electrons			(c.)	transfer of ele	ectrons from Fe to	0	
	b.	sharing of electrons			d.	transfer of ele	ectrons from O to	Fe	
10	NA/h	at aubatanaa wiil NOT							
10.	OVIII	at substance will NOT	conau	ct electr	icity wn	en aissoivea in	water?		
((a.)	C ₆ H ₁₂ O ₆		C.	HCI				
	b.	(NH ₄) ₂ CO ₃		d.	AlF ₃				
	_			Š.					
11.		o alloys are shown in t lleability of both alloys					l. Which of the fo	llowing corre	ctly describes the
			-	area to	their pri	illary illetais:			
		substitutional substitutional	\bigcirc			\bigcirc	000	100	interstitist
	5	Mall	\bigcirc	\sim				X0X	allay
		Will S		\sim	\searrow	\preceq	000	$\mathcal{I} \cup \mathcal{I}$	8
					\bigcirc	\times	000	$O_{a}O_{a}$	
		1	\bigcirc	\bigcirc	\bigcirc		$\tilde{\bigcirc}$	3°0	
		l	-	Bro	nze	\smile	Steel		
				O=	Cu				
				\sim			○= Fe		
				◯)=	= Sn		○= C		
(a.	Bronze's malleability than that of iron.	would	be com	parable	to that of copp	er, but steel's ma	lleability wou	ıld be significantly lower
	b.	Bronze's malleability comparable to that or		be signi	ficantly	higher than tha	at of copper, but s	teel's mallea	bility would be
	c.	Both bronze and stee	l would	d have n	nalleabil	ity values simil	ar to those of the	ir primary me	etals.

12. Which compound CaCl₂ or CaO, would you expect to have a higher melting point? Why?

- a. CaCl₂, because there are more ions per lattice unit.
- b. CaCl₂, because a chlorine ion is smaller than an oxygen ion.
- C.) CaO, because the charge of an oxygen ion exceeds that of a chlorine ion
- d. CaO, because the common charges of calcium and oxygen atoms are identical in magnitude

d. Both bronze and steel would have malleability values lower than those of their primary metals.

13 All Together Now ©

Remember, nature is striving for a LOWER ENERGY STATE!

Types of Chemical Bonds							
	What holds them together?	Characteristic Properties	Conductivity				
lonic	Strong electrostatic attraction between ions (lattice energy)	 Typically high melting and boiling points; Usually found in the solid state because the electrostatic attraction is SO strong 	 Conductors of electricity only in (aq) or (I) states (when ions are mobile) Electrolytes when dissolved in water 				
Covalent	Electrons are shared by nuclei; however, sharing is hardly ever equal!	 Can be solids, liquids or gases (depending on IMFs); Have low melting and boiling points 	 Poor conductors of electricity (no mobile charges) Not electrolytes when dissolved in water 				
Metallic	Attraction between "sea" of mobile or delocalized electrons and positive metal ions	 Solids with a crystalline structure at room temp; Range of melting points, usually depending on number of valence electrons 	Excellent conductors of electricity since electrons in the "sea" are free to move				

More Practice!

- 1. An unknown substance is found to have a high melting point. In addition, it is a poor conductor of electricity and does not dissolve in water. The substance most likely contains
 - a. ionic bonding
- c. non-polar covalent bonding
- b. metallic bonding
- (d.) covalent network bonding
- 2. The graph below shows the amount of potential energy between two hydrogen atoms as the distance between them changes. At which point in the graph would a molecule of H₂ be the most stable?

a. Point A

b. Point B

(c.)

Point C

d. Point D