Covalent Bonds

Covalent (Molecular) Bonding: two nonmetal atoms 5hare electrons to fill the valence level of both atoms.

- Occurs between elements with <u>Similar</u> electronegativities, high effective nuclear charges (Z_{eff}) and small radii, so they can attract and hold each other's electrons to make shared pairs of electrons.
- The smallest group of elements held together by a covalent bond is called a mole cule
- Atoms can make <u>single</u>, <u>double</u>, or <u>triple</u> bonds depending on whether they share one, two, or three pairs of electrons respectively.
 - o Multiple bonds are most often formed by C, N, O, P and S atoms, aka <u>C NOPS</u>

Covalent Bond Properties

- . Low melting points and boiling points. (held together by IMFs)
- Typically do NoT conduct electrical current because they lack mobile charges (EXCEPT strong acids!)

Coulomb's Law tells us:

- The negative electrons of one atom and the positive nucleus of another atom atract each other.
- If the nuclei of two atoms get too close together, their like charges <u>lepel</u> each other.

Bond length: the distance two covalently bonded atoms at their <u>lowest</u> potential energy. It is a balance between opposing forces:

- Attractive electrostatic forces between the nucleus of one atom and the electrons of another
- Repulsive forces between the two positively charged nuclei

Bond Type	Bond Order	Bond Length	Bond Strength
Single bond	1	longer	weaker
Double bond	2	medium	medium
Triple bond	3	shorter	stronger

Multiple bonds increase the electron density between two nuclei

- Decreases repulsions between the two nuclei
- Nuclei can move closer together → multiple bonds bond length!

Directions: On the left, show the neutral, separate atoms using Lewis valence electron dot structures. On the right, depict the bonding atoms sharing electrons.

2 atoms of F : F. · F:	F ₂ :F-F:
2 atoms of O	$ \begin{array}{c c} O_2 \\ O = O \\ O \\ A \\ A$
2 atoms of N	Nz Very Stable! $ N \equiv N: \rangle : N :: N: N: \rangle$ G Sharede

- Explain: why does it require more energy to break the bond between O₂ than F₂? ble the Oz double bond (with 4 sharede-) is stronger than the Fz single bond (w/ only 2 shared e-)
- Rank the following in order of increasing bond <u>length</u>: O₂, F₂, N₂, H₂

$$H_2 < N_2 < O_2 < F_2$$

9 Network Covalent Solids

Network Covalent Solid: a crystalline structure is formed by non-metals covalently bonded together into 2-D (sheets) or 3-D networks.

- A perfect single crystal of a network covalent solid is a single, giant molecule!
- VERY <u>high</u> melting and boiling points
- Very rigid and hard
- Chemically <u>inert</u> (non-reactive); rarely dissolve in water

Types of Crystalline Solids

Non-Polar Covalent, Polar Covalent, or Ionic Bonding?

The attraction or "pull" on the bonded electron pair (i.e. electronegativity) determines bond polarity.

- 1. Non-polar covalent bond: bonding electrons are shared equally by the bonded atoms.
 - Electronegativity difference between atoms (Δ EN) < $\frac{O.4}{}$.
 - Examples:
 - i. Diatomic molecules (Br₂, I₂, N₂, etc)
 - ii. Any C-H bond.

- 2. <u>Polar covalent bond</u>: bonded atoms have an <u>unequal</u> attraction for the shared electrons.
 - 0.4 < ΔEN < 2.0
 - The atom with the greatest electrone gativity has a greater attraction for the shared electrons, so they claim a greater amount of electron density.
 - The uneven electron density creates a dipole : a partial ___ charge on the atom with higher electron density and a partial _____ charge on the atom with lower electron density.
 - An <u>arrow</u> is used to represent the dipole (sometimes called a dipole moment): the arrow points towards the ____ pole (i.e. the most electronegative atom) and has a crossed tail at the ____ pole (least electronegative atom).

$+ \rightarrow$		δ^+	8
H-F	or	Й-	_

3. Ionic bond: a bond where the electronegativity difference between the two atoms is so extreme that one atom takes custody of all the contested electrons! ($\Delta EN > Q \cdot Q$)

The Continuum of Bond Types

