

- 1. The above PES belongs to a neutral chlorine atom.
 - a. What energy of light, in MJ/mol, would be required to eject a 3s electron from chlorine? (1 point)
 - b. What wavelength of light, in m, would be required to eject the same 3s electron? (2 points)

A second PES is run, this time for a sample of chloride ions.

- c. For the PES of a chloride ion, how would the following variables compare to the peaks on the PES above? Justify your answers.
 - i. Number of peaks (1 point)
 - ii. Height of peaks (1 point)
- d. Draw the orbital diagram for a chloride ion. (1 point)
- e. Identify the noble gas which is isoelectronic to a chloride ion. (1 point)

6J Imol	= 4.05×10-18J
MJ 6.022 E23 electro	ns
hc = (6.626 E-34)	(8)(2.998 E8 m/s)
E 4.05 E-	T 81
= 4.90 × 10-8 m	
	hc = (6.626 E-34) E 4.05 E-

(c.) A chloride ion has I more e, which would be added	
to the 3p Sublevel, making 6e - in the 3p Sublevel.	
(i) Since the rightmost peak already represents	
the 3p sublevel, no new peaks are added =>	
Deak # remains the same.	
(ii) The first 4 peaks would stay the same height	
but the 195+ 3p peak Would increase in height	
by I e- making it equal in height to the 2p	
(ii) The first 4 peaks would stay the same height, but the last 3p peak Would increase in height by 1 e-, making it equal in height to the 2p peak in the middle.	
d.) CI : 11 11 11 11 11 11 11 11 11 11 11 11 1	
15 25 2p 35 3p	
e.) Ar	